In this paper, we discuss the controllability of fractional Langevin delay dynamical systems represented by the fractional delay differential equations of order 0 < α, β 1. Necessary and sufficient conditions for the controllability of linear fractional Langevin delay dynamical system are obtained by using the Grammian matrix. Sufficient conditions for the controllability of the nonlinear delay dynamical systems are established by using the Schauders fixed-point theorem. The problem of controllability of linear and nonlinear fractional Langevin delay dynamical systems with multiple delays and distributed delays in control are studied by using the same technique. Examples are provided to illustrate the theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.