BackgroundRNA:DNA hybrids represent a non-canonical nucleic acid structure that has been associated with a range of human diseases and potential transcriptional regulatory functions. Mapping of RNA:DNA hybrids in human cells reveals them to have a number of characteristics that give insights into their functions.ResultsWe find RNA:DNA hybrids to occupy millions of base pairs in the human genome. A directional sequencing approach shows the RNA component of the RNA:DNA hybrid to be purine-rich, indicating a thermodynamic contribution to their in vivo stability. The RNA:DNA hybrids are enriched at loci with decreased DNA methylation and increased DNase hypersensitivity, and within larger domains with characteristics of heterochromatin formation, indicating potential transcriptional regulatory properties. Mass spectrometry studies of chromatin at RNA:DNA hybrids shows the presence of the ILF2 and ILF3 transcription factors, supporting a model of certain transcription factors binding preferentially to the RNA:DNA conformation.ConclusionsOverall, there is little to indicate a dependence for RNA:DNA hybrids forming co-transcriptionally, with results from the ribosomal DNA repeat unit instead supporting the intriguing model of RNA generating these structures intrans. The results of the study indicate heterogeneous functions of these genomic elements and new insights into their formation and stability in vivo.Electronic supplementary materialThe online version of this article (doi:10.1186/s13072-015-0040-6) contains supplementary material, which is available to authorized users.
Background Leptomeningeal metastases (LM) are associated with limited survival and treatment options. While involved-field radiotherapy is effective for local palliation, it lacks durability. We evaluated the toxicities of proton craniospinal irradiation (CSI), a treatment encompassing the entire central nervous system (CNS) compartment, for patients with LM from solid tumors. Methods We enrolled patients with LM to receive hypofractionated proton CSI in this phase I prospective trial. The primary end point was to describe treatment-related toxicity, with dose-limiting toxicity (DLT) defined as any radiation-related grade ≥ 3 non-hematologic toxicity or grade ≥ 4 hematologic toxicity according to CTCAE that occurred during or within 4 weeks of completion of proton CSI. Secondary end points included CNS progression-free survival (PFS) and overall survival (OS). Results We enrolled 24 patients between June 2018 and April 2019. Their median follow-up was 11 months. Twenty patients were evaluable for protocol treatment-related toxicities and 21 for CNS PFS and OS. Two patients in the dose expansion cohort experienced DLTs consisted of Grade 4 lymphopenia, Grade 4 thrombocytopenia, and/or Grade 3 fatigue. All DLTs resolved without medical intervention. The median CNS PFS was 7 months (95% CI 5-13) and the median OS was 8 months (95% CI 6 to not reached). Four patients (19%) were progression free in the CNS for more than 12 months. Conclusions Hypofractionated proton CSI using proton therapy is a safe treatment for patients with LM from solid tumors. We saw durable disease control in some patients.
Background: RNA:DNA hybrids represent a non-canonical nucleic acid structure that has been associated with a range of human diseases and potential transcriptional regulatory functions. Mapping of RNA:DNA hybrids in human cells reveals them to have a number of characteristics that give insights into their functions. Results:We find RNA:DNA hybrids to occupy millions of base pairs in the human genome. A directional sequencing approach shows the RNA component of the RNA:DNA hybrid to be purine-rich, indicating a thermodynamic contribution to their in vivo stability. The RNA:DNA hybrids are enriched at loci with decreased DNA methylation and increased DNase hypersensitivity, and within larger domains with characteristics of heterochromatin formation, indicating potential transcriptional regulatory properties. Mass spectrometry studies of chromatin at RNA:DNA hybrids shows the presence of the ILF2 and ILF3 transcription factors, supporting a model of certain transcription factors binding preferentially to the RNA:DNA conformation. Conclusions:Overall, there is little to indicate a dependence for RNA:DNA hybrids forming co-transcriptionally, with results from the ribosomal DNA repeat unit instead supporting the intriguing model of RNA generating these structures in trans. The results of the study indicate heterogeneous functions of these genomic elements and new insights into their formation and stability in vivo.
The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure.
PURPOSE Photon involved-field radiotherapy (IFRT) is the standard-of-care radiotherapy for patients with leptomeningeal metastasis (LM) from solid tumors. We tested whether proton craniospinal irradiation (pCSI) encompassing the entire CNS would result in superior CNS progression-free survival (PFS) compared with IFRT. PATIENTS AND METHODS We conducted a randomized, phase II trial of pCSI versus IFRT in patients with non–small-cell lung cancer and breast cancers with LM. We enrolled patients with other solid tumors to an exploratory pCSI group. For the randomized groups, patients were assigned (2:1), stratified by histology and systemic disease status, to pCSI or IFRT. The primary end point was CNS PFS. Secondary end points included overall survival (OS) and treatment-related adverse events (TAEs). RESULTS Between April 16, 2020, and October 11, 2021, 42 and 21 patients were randomly assigned to pCSI and IFRT, respectively. At planned interim analysis, a significant benefit in CNS PFS was observed with pCSI (median 7.5 months; 95% CI, 6.6 months to not reached) compared with IFRT (2.3 months; 95% CI, 1.2 to 5.8 months; P < .001). We also observed OS benefit with pCSI (9.9 months; 95% CI, 7.5 months to not reached) versus IFRT (6.0 months; 95% CI, 3.9 months to not reached; P = .029). There was no difference in the rate of grade 3 and 4 TAEs ( P = .19). In the exploratory pCSI group, 35 patients enrolled, the median CNS PFS was 5.8 months (95% CI, 4.4 to 9.1 months) and OS was 6.6 months (95% CI, 5.4 to 11 months). CONCLUSION Compared with photon IFRT, we found pCSI improved CNS PFS and OS for patients with non–small-cell lung cancer and breast cancer with LM with no increase in serious TAEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.