Considering Alappuzha Mud Bank in the southern Kerala coast as a typical case of biologically productive Mud Banks that form along the southwest coast of India during the Southwest Monsoon (June - September), the present study addresses several pertinent missing links between the physical environment in Mud Banks and their influence on plankton stock. This study showed that very strong coastal upwelling prevails in the entire study domain during the Southwest Monsoon, which manifests itself in the form of significantly cool, hypoxic and nitrate-rich waters surfacing near the coast. The upwelled water persisting throughout the Southwest Monsoon period was found to have fuelled the exceptionally high phytoplankton stock in the entire study area, including the Mud Bank region. Having accepted that Mud Banks are special because of the calm sea surface conditions and relatively high turbidity level in the water column around them, the present study showed that except at points close to the sea bottom, turbidity level in the Alappuzha Mud Bank was below the critical level to inhibit the plankton stock. The suspended sediments that form in the Mud Bank occasionally could be attributed to the disturbance of the bottom fluid muddy layer and their vertical spurts.
An interesting physiological response of phytoplankton to large fluctuations in underwater photosynthetically active radiation (PAR) levels in the northern Bay of Bengal has been presented here. This study is primarily based on a 12-day time series observation in the northern Bay of Bengal during the peak Southwest Monsoon (July 2012), when the study region was recurrently exposed to alternating cloudy and sunny sky conditions. On overcast days, the PAR available underwater at the time series location (TSL) drastically decreased, with the noontime PAR at the surface water (2 m) usually being ~600 µmol m−2 s−1 on sunny days and declining to ~50 µmol m−2 s−1 on heavily overcast days. Closely linked with the sunny and cloudy days at TSL, chlorophyll a concentration in the water column showed noticeable features; it increased in the upper water column (surface-40 m) and decreased in the lower water column (41–80 m) on cloudy days, while the reverse was the case on sunny days. Based on in-situ and laboratory experimental data, it was observed that these temporal changes in the vertical distribution of chlorophyll a in the northern Bay of Bengal were due to the short-term physiological acclimation of phytoplankton to large changes in underwater PAR.
The grazing rate of copepods on the total and size-fractionated phytoplankton biomass in a coastal environment (off Kochi, southwest coast of India) were measured during pre-monsoon (PRM), peak southwest monsoon (PKSWM), late southwest monsoon (LSWM) and post-southwest monsoon (PSWM). The phytoplankton standing stock (chlorophyll a-Chl. a) and growth rate (GR) were less during the PRM (Chl. a 0.58 mg m; GR 0.23 ± 0.02) and PSWM (Chl. a 0.89 mg m; GR 0.30 ± 0.05) compared to PKSWM (Chl. a 6.67 mg m; GR 0.43 ± 0.02) and LSWM (Chl. a 4.09 mg m; GR 0.40 ± 0.04). The microplankton contribution to the total Chl. a was significant during the PKSWM (41.83%) and LSWM (45.72%). Copepod density was lesser during the PRM (1354 No m) and PSWM (1606 No m) than during PKSWM and LSWM (4571 and 3432 No m, respectively). Seasonal changes in phytoplankton biomass, phytoplankton size structure, and copepod community were closely related to the hydrographical transformations in the study domain. Dominant calanoid copepods in the study region ingested 8.4 to 14.2% of their daily ration from phytoplankton during the PRM and PSWM, which increased to >50% during the PKSWM and LSWM. The cyclopoid Oithona similis was abundant during the PKSWM, ingesting only 21% of their daily ration from phytoplankton. Temporal variation in the phytoplankton biomass and copepod species composition caused differences in community level top-down control. The copepod community ingestion on phytoplankton was high during the LSWM (18,583 μg C md), followed by PKSWM (9050 μg C md), PSWM (1813 μg C md), and PRM (946 μg C md). During the low Chl. a period (PRM and PSWM), dominant calanoid copepods showed a positive selectivity for the micro- and nano-phytoplankton size fractions, whereas during the high Chl. a period (PKSWM and LSWM), they showed a positive selection for nano-phytoplankton fractions. Irrespective of the seasons, dominant calanoid copepods showed a negative selection of pico-phytoplankton fraction. The cyclopoid O. similis and Poecilostomatoid Corycaeus danae showed a positive selection of nano- and pico-phytoplankton fractions rather than micro-fraction. The grazing pressure of copepod community ingestion on micro-fraction was less (0.56% of the phytoplankton biomass and 1.06% of the phytoplankton production) during the PKSWM. This study provides, for the first time, clear findings on the seasonal variation in the top-down control of phytoplankton by copepods in a tropical coastal water ecosystem and discusses its implications on phytoplankton blooming, plankton food web, and biogeochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.