Commission VIII, WG VIII/8 KEY WORDS: UHI, Thermal Remote Sensing, Landsat 8 OLI/TIRS, MODIS, Change Detection, LU/LC ABSTRACT:The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88% for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 ֯ C for 2001 and 6.8 ֯ C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r 2 =0.7 and r 2 =0.9 for 2001 and 2014, respectively).
Abstract. The world's average surface temperature has been increasing in recent decades. This situation is expected to affect aquatic systems and lakes are one of the most important aquatic systems. The main aims of this study are to examine Lake Surface Water Temperature (LSWT) and area changes of Burdur and Egirdir lakes located in the West Mediterranean Region (TR61) of Turkey for the years 1998, 2008 and 2018 using Landsat satellite images. For this purpose, initially, Normalized Difference Vegetation Index (NDVI) and Modified Normalized Difference Water Index (MNDWI) images were generated and the lake shorelines were extracted by thresholding these images. Then, the LSWT values were obtained by using Landsat thermal images. Finally, the area and LSWT changes of Burdur and Egirdir lakes between the years 1998-2008-2018 and the relationships of these parameters with each other were analysed. The obtained results showed that the lake boundaries could be semi-automatically extracted with overall accuracy values higher than 95%. In 20-year time period it was also observed that the Burdur Lake area decreased significantly, while the Egirdir Lake area decreased slightly. When the LSWT values were analysed, it can be stated that the LSWT values increased in both lakes during this time period. The amount of increase in LSWT values was about 2.2 °C for Burdur Lake, while about 1.3 °C for Egirdir Lake.
The aims of this study were to determine surface urban heat island (SUHI) effects and to analyze the land use/land cover (LULC) and land surface temperature (LST) changes for 11 time periods from the years 2002 to 2020 using Landsat time series images. Bursa, which is the fourth largest metropolitan city in Turkey, was selected as the study area, and Landsat multi-temporal images of the summer season were used. Firstly, the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), modified normalized difference water index (MNDWI) and index-based built-up index (IBI) were created using the bands of Landsat images, and LULC classes were determined by applying automatic thresholding. The LST values were calculated using thermal images and SUHI effects were determined. The results show that NDVI, SAVI, MNDWI and IBI indices can be used effectively for the determination of the urban, vegetation and water LULC classes for SUHI studies, with overall classification accuracies between 89.60% and 95.90% for the used images. According to the obtained results, generally the LST values increased for almost all land cover areas between the years 2002 and 2020. The SUHI magnitudes were computed by using two methods, and it was found that there was an important increase in the 18-year time period.
Abstract. The objectives of this study are: to create land-use maps by 5-year interval from 1995 to 2015, to analyse the land use change and urban development, and to estimate future land-use pattern and urban growth for the years: 2030, 2045 and 2060. Antalya, which is the 5th biggest city of Turkey, was selected as study area. In this study, there are basically three stages: (i) preprocessing and preparing additional bands, (ii) spatiotemporal land use detection using image classification and (iii) land use simulation using urban growth models. Firstly, atmospheric correction was applied to the Landsat 5 TM and Landsat 8 OLI images and land-cover indices, ASTER Global Digital Elevation Model (GDEM), and Nighttime data were prepared to use them as additional bands during the classification process. Secondly, Landsat images were classified using Random Forest (RF) machine-learning algorithm. Thirdly, urban simulations were performed for the years 2005, 2010, and 2015 and land-use pattern and urban growth was estimated for the years 2030, 2045 and 2060. The RF classification accuracies range from 84.44% to 92.82%. The urban areas increased from 49.56 km2 to 96.25 km2 from 1995 to 2015. The simulation accuracies were computed above 80%. According to the 2030, 2045 and 2060 simulation results, the urban areas were computed as 133.61 km2, 148.27 km2 and 156.85 km2, respectively. As a result, it was seen that the urban area of Antalya has almost doubled between the years 1995–2015 and the urban expansion is expected to continue increasing up to 1960.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.