In the present paper we consider numerical methods to solve the discrete Schrödinger equation with a time dependent Hamiltonian (motivated by problems encountered in the study of spin systems). We will consider both short-range interactions, which lead to evolution equations involving sparse matrices, and long-range interactions, which lead to dense matrices. Both of these settings show very different computational characteristics. We use Magnus integrators for time integration and employ a framework based on Leja interpolation to compute the resulting action of the matrix exponential. We consider both traditional Magnus integrators (which are extensively used for these types of problems in the literature) as well as the recently developed commutator-free Magnus integrators and implement them on modern CPU and GPU (graphics processing unit) based systems.We find that GPUs can yield a significant speed-up (up to a factor of 10 in the dense case) for these types of problems. In the sparse case GPUs are only advantageous for large problem sizes and the achieved speed-ups are more modest. In most cases the commutator-free variant is superior but especially on the GPU this advantage is rather small. In fact, none of the advantage of commutator-free methods on GPUs (and on multi-core CPUs) is due to the elimination of commutators. This has important consequences for the design of more efficient numerical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.