The conductivities of rocks of a suite from the Craigmont ore environment were studied as functions of frequency over the four decades 1,000 to 0.1 cps. The following were observed on a plot of linear conductivity vs log frequency. (1) Rocks mineralized with disseminated sulfides and magnetite yield low‐to‐moderate induced polarization (I.P.) and have conductivity‐frequency spectra which are concave‐up. (2) As veining increases, the spectra tend to straighten, and become sensibly straight when much of the metallics are interconnected; such rocks are characterized by low to large I.P. (3) Massive specular hematite cores yield a large I.P. and have spectra which are markedly concave‐up. For comparison, (4) clay‐containing sandstones yield low to moderate I.P. and have spectra which are slightly convex‐up. Consequently, the combination of I.P. magnitude and spectral analysis permits distinction of the various mineralization types.
Samples of β-dicalcium silicate, γ-dicalcium silicate, tricalcium silicate, hillebrandite and dehydrated hillebrandite were exposed to saturated steam at temperatures between 50° and 375 °C. After drying to constant weight (usually over calcium oxide) the increase in weight and the amount of free calcium hydroxide were determined. Microscopic examinations and X-ray diffraction patterns of the products were made. The hydration products were then dehydrated and similar studies of the products made. The hydrolysis of the hydration products also was studied.It was found that between 110° and 350 °C. β- and γ-dicalcium silicates may absorb water without hydrolysis to form three crystalline products. Two of these are identical with products already described (20); the third product appears to possess another characteristic crystalline structure as shown by the X-ray pattern, but to have a variable water content with a limiting composition of 2CaO∙SiO2∙H2O. The hydration product may be dehydrated without the liberation of lime.When conditions favoring hydrolyses are avoided, tricalcium silicate hydrates directly to a crystalline hydrate which probably has the limiting composition, 3CaO∙SiO2∙2H2O, although products holding from 1.3 to 2 moles of water give the same X-ray diffraction pattern. When the conditions favor partial hydrolysis, tricalcium silicate decomposes into calcium hydroxide and crystalline hydrated dicalcium silicate. Dehydration of hydrated tricalcium silicate gives one mole of lime along with dicalcium silicate.Hillebrandite exposed to saturated steam at 160 °C. remained unchanged while a sample of dehydrated hillebrandite on hydration gave a product similar to that obtained from β-dicalcium silicate.When treated with a large excess of water, the hydrated silicates hydrolyze to the same extent as the anhydrous silicates, but the final equilibrium is attained more rapidly, especially in the case of hydrated dicalcium silicate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.