Cell cytoplasm contains high concentrations of high-molecular-weight components that occupy a substantial part of the volume of the medium (crowding conditions). The effect of crowding on biochemical processes proceeding in the cell (conformational transitions of biomacromolecules, assembling of macromolecular structures, protein folding, protein aggregation, etc.) is discussed in this review. The excluded volume concept, which allows the effects of crowding on biochemical reactions to be quantitatively described, is considered. Experimental data demonstrating the biochemical effects of crowding imitated by both low-molecular-weight and high-molecular-weight crowding agents are summarized.
The thermal stability of rabbit skeletal muscle glycogen phosphorylase b was characterized using enzymological inactivation studies, differential scanning calorimetry, and analytical ultracentrifugation. The results suggest that denaturation proceeds by the dissociative mechanism, i.e., it includes the step of reversible dissociation of the active dimer into inactive monomers and the following step of irreversible denaturation of the monomer. It was shown that glucose 1-phosphate (substrate), glucose (competitive inhibitor), AMP (allosteric activator), FMN, and glucose 6-phosphate (allosteric inhibitors) had a protective effect. Calorimetric study demonstrates that the cofactor of glycogen phosphorylase-pyridoxal 5'-phosphate-stabilizes the enzyme molecule. Partial reactivation of glycogen phosphorylase b preheated at 53 degrees C occurs after cooling of the enzyme solution to 30 degrees C. The fact that the rate of reactivation decreases with dilution of the enzyme solution indicates association of inactive monomers into active dimers during renaturation. The allosteric inhibitor FMN enhances the rate of phosphorylase b reactivation.
A catalytic fragment, gamma 1-298, derived from limited chymotryptic digestion of phosphorylase b kinase (Harris, W.R. et al., J. Biol. Chem., 265: 11740-11745, 1990), is reported to have about six-fold greater specific activity than does the gamma subunit-calmodulin complex. To test whether there is an inhibitory domain located outside the catalytic core of the gamma subunit, full-length wild-type and seven truncated forms of gamma were expressed in E. coli. Recombinant proteins accumulate in the inclusion bodies and can be isolated, solubilized, renatured, and purified further by ammonium sulfate precipitation and Q-Sepharose column. Four out of seven truncated mutants show similar (gamma 1-353 and gamma 1-341) or less (gamma 1-331 and gamma 1-276) specific activity than does the full-length wild-type gamma, gamma 1-386. Three truncated forms, gamma 1-316, gamma 1-300, and gamma 1-290 have molar specific activities approximately twice as great as those of the full-length wild-type gamma and the nonactivated holoenzyme. All recombinant gamma s exhibit similar Km values for both substrates, i.e., about 18 microM for phosphorylase b and about 75 microM for MgATP. Three truncated gamma s, gamma 1-316, gamma 1-300, and gamma 1-290, have a 1.9- to 2.5-fold greater catalytic efficiency (Vmax/Km) than that of the full-length wild-type gamma and a 3.5- to 4.5-fold greater efficiency than that of the truncated gamma 1-331. This evidence suggests that there is at least one inhibitory domain in the C-terminal region of gamma, which is located at gamma 301-331. gamma 1-290, but not gamma 1-276, which contains the highly conserved kinase domain, is the minimum sequence required for the gamma subunit to exhibit phosphotransferase activity. Both gamma 1-290 and gamma 1-300 have several properties similar to full-length wild-type gamma, including metal ion responses (activation by free Mg2+ and inhibition by free Mn2+), pH dependency, and substrate specificities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.