The effect of tetanic activation of corticostriatal glutamatergic fibers was studied in striatal slices by utilizing extracellular and intracellular recording techniques. Tetanic stimulation produced a long-term synaptic depression (LTD) (> 2 h) of both extracellularly recorded field potentials and intracellularly recorded EPSPs. LTD was not coupled with changes of intrinsic membrane properties of the recorded neurons. In some neurons, repetitive cortical activation produced a short-term posttetanic potentiation (1-3 min). Subthreshold tetanic stimulation, which under control condition did not cause LTD, induced LTD when associated with membrane depolarization. Moreover, LTD was not expressed in cells in which the conditioning tetanus was coupled with hyperpolarization of the membrane. Bath application of aminophosphonovalerate (30-50 microM), an antagonist of NMDA receptors, did not affect the amplitude of the synaptic potentials and the expression of LTD. Striatal LTD was significantly reduced by the pretreatment of the slices with 30 microM 2-amino-3-phosphonopropionic acid, an antagonist of glutamate metabotropic receptors. LTD was not blocked by bicuculline (30 microM), a GABA(A) receptor antagonist. Scopolamine (3 microM), an antagonist of muscarinic receptors, induced a slight, but significant, increase of the amplitude of LTD. Both SCH 23390 (3 microM), an antagonist of D1 dopamine (DA) receptors, and I-sulpiride (1 microM), an antagonist of D2 DA receptors, blocked LTD. LTD was also absent in slices obtained from rats in which the nigrostriatal DA system was lesioned by unilateral nigral injection of 6-hydroxydopamine. In DA-depleted slices, LTD could be restored by applying exogenous DA (30 microM) before the conditioning tetanus. In DA-depleted slices, LTD could also be restored by coadministration of SKF 38393 (3-10 microM), a D1 receptor agonist, and of LY 171555 (1-3 microM), a D2 receptor agonist. Application of a single class of DA receptor agonists failed to restore LTD. These data show that striatal LTD requires three main physiological and pharmacological conditions: (1) membrane depolarization and action potential discharge of the postsynaptic cell during the conditioning tetanus, (2) activation of glutamate metabotropic receptors, and (3) coactivation of D1 and D2 DA receptors. Striatal LTD may alter the output signals from the striatum to the other structures of the basal ganglia. This form of synaptic plasticity can influence the striatal control of motor activity.
Intracellular recordings were made from 475 rat substantia nigra zona compacta neurons in vitro. The region from which recordings were made was rich in catecholamine fluorescence. Two groups of neuron, termed principal neurons (95% of the total) and secondary neurons (5% of the total) were clearly distinguishable according to one or more of the following 4 electrophysiological properties. Secondary neurons (23 cells) (1) fired spontaneous action potentials at frequencies greater than 10 Hz, or were quiescent (30%); (2) had action potentials less than 1 msec in duration; (3) did not show time-dependent inward rectification with step hyperpolarization; and (4) had slope conductances of about 4 nS (between -75 and -90 mV). In contrast, principal neurons (1) fired spontaneous action potentials in the range 1-8 Hz, or were quiescent (33%); (2) had action potentials greater than 1 msec in duration; (3) showed pronounced time-dependent inward rectification; and (4) had steady-state membrane slope conductances of around 22 nS (between -75 and -90 mV). Secondary cells were not affected by dopamine but were hyperpolarized by baclofen, GABA, and the mu opioid receptor agonist Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO). On the other hand, dopamine and baclofen inhibited firing and/or hyperpolarized all principal cells tested, but mu or delta opioid receptor agonists had no effect. The properties of these 2 cell types broadly correspond with those described by electrophysiological studies in vivo, in which case the majority, or principal, cells are believed to be dopaminergic.(ABSTRACT TRUNCATED AT 250 WORDS)
Intracellular recordings were made from presumed dopamine-containing neurons in slices cut from the midbrain of the rat. Focal electrical stimulation produced a hyperpolarizing synaptic potential that was reduced by 75-95% by the GABAB-receptor antagonist 2-hydroxysaclofen (300 microM). 5-HT (3-100 microM) reduced the amplitude of the GABAB synaptic potential by 20-74%, with a 50% reduction at 10 microM, but did not reduce the amplitude of synaptic potentials mediated by GABAA receptors. 5-HT acted presynaptically because hyperpolarizations produced by exogenously administered GABA (1 mM) in picrotoxin (100 microM) were not affected by 5-HT (30 microM). (+/-)-Cyanopindolol (100 nM), a 5-HT1B antagonist, blocked the effect of 5-HT (10 microM); spiperone (1 microM), which is an antagonist at 5-HT1A and 5-HT2 receptors, had no effect. The amplitude of the GABAB synaptic potential was reduced by the 5-HT1B receptor agonists 1-[3-(trifluoromethyl)-phenyl]-piperazine (300 nM) and 7-trifluoromethyl-4-(4-methyl-1-piperazinyl)-pyrrolo[1,2-a]quinoxaline (1 microM), but not by the 5-HT1A agonist N,N-dipropyl-5-carboxamidotryptamine (1 microM) or the 5-HT2 agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane (10 microM). We conclude that 5-HT activates presynaptic 5-HT1B receptors that inhibit the release of GABA onto GABAB but not GABAA receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.