This work is dedicated to the study of the growth by ammonia source molecular beam epitaxy of AlxGa1−xN/GaN high electron mobility transistors on (111) oriented silicon substrates. The effect of growth conditions on the structural and electrical properties of the heterostructures was investigated. It is shown that even a slight variation in the growth temperature of the thick GaN buffer on AlN/GaN stress mitigating layers has a drastic influence on these properties via a counterintuitive effect on the dislocation density. Both in situ curvature measurements and ex situ transmission electron microscopy and x-ray diffraction experiments indicate that the relaxation rate of the lattice mismatch stress increases with the growth temperature but finally results in a higher dislocations density. Furthermore, a general trend appears between the final wafer curvature at room temperature and the threading dislocation density. Finally, the influence of the dislocation density on the GaN buffer insulating properties and the two-dimensional electron gas transport properties at the AlxGa1−xN/GaN interface is discussed.
As GaN technology continues to gain popularity, it is necessary to control the ohmic contact properties and to improve device consistency across the whole wafer. In this paper, we use a range of submicron characterization tools to understand the conduction mechanisms through the AlGaN/GaN ohmic contact. Our results suggest that there is a direct path for electron flow between the two dimensional electron gas and the contact pad. The estimated area of these highly conductive pillars is around 5% of the total contact area. (C) 2011 American Institute of Physics. [doi:10.1063/1.3661167
MicroLED is a new, self-emissive display technology. It offers unique features that could disrupt the display market as well as trigger significant changes in the supply chain. The authors have thoroughly analyzed the microLED industry landscape, including microLED's technological status and its strengths and weaknesses for all major display applications.
A fully integrated electromechanical resonator is described that is based on high mobility piezoelectric semiconductors for actuation and detection of nanoscale motion. We employ the two-dimensional electron gas present at an AlGaN/GaN interface and the piezoelectric properties of this heterostructure to demonstrate a resonant high-electron-mobility transistor enabling the detection of strain variation. In this device, we take advantage of the polarization field divergence originated by mechanical flexural modes for generating piezoelectric doping. This enables a modulation of carrier density which results in a large current flow and thus constitutes a motion detector with intrinsic amplification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.