Motivated by the industrial processing of chocolate, we study experimentally the fluidisation of a sessile drop of yield-stress fluid on a pre-existing layer of the same fluid under vertical sinusoidal oscillations. We compare the behaviours of molten chocolate and Carbopol which are both shear-thinning with a similar yield stress but exhibit very different elastic properties. We find that these materials spread when the forcing acceleration exceeds a threshold which is determined by the initial deposition process. However, they exhibit very different spreading behaviours: whereas chocolate exhibits slow long-term spreading, the Carbopol drop rapidly relaxes its stress by spreading to a new equilibrium shape with an enlarged footprint. This spreading is insensitive to the history of the forcing. In addition, the Carbopol drop performs large-amplitude oscillations with the forcing frequency, both above and below the threshold. We investigate these viscoelastic oscillations and provide evidence of complex nonlinear viscoelastic behaviour in the vicinity of the spreading threshold. In fact, for forcing accelerations greater than the spreading threshold, our drop automatically adjusts its shape to remain at the yield stress. We discuss how our vibrated-drop experiment offers a new and powerful approach to probing the yield transition in elastoviscoplastic fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.