Advancement in the production of potassium fertilizers is an important strategic task of Russian agricultural industry. Given annually growing production rates, the reserves of discovered potassium-magnesium salt deposits are noticeably decreasing, which creates the need to ensure stable replenishment of the resource base through both the discovery of new deposits and the exploitation of deep-lying production horizons of the deposits that are already under development. In most cases, deposits of potassium-magnesium salts are developed by underground mining. The main problem for any salt deposit is water. Dry salt workings do not require any additional reinforcement and can easily withstand rock pressure, but with an inflow of water they begin to collapse intensively – hence, special attention is paid to mine waterproofing. Determination of spatial location, physical and mechanical properties of the aquifer and water-blocking stratum in the geological section represent an important stage in the exploration of a salt deposit. The results of these studies allow to validate an optimal system of deposit development that will minimize environmental and economic risks. On the territory of Russia, there is a deposit of potassium-magnesium salts with a unique geological structure – its production horizon lies at a considerable depth and is capped by a regional aquifer, which imposes significant limitations on the development process. To estimate parameters of the studied object, we analyzed the data from CDP seismic reflection survey and a suite of methods of radioactive and acoustic well logging, supplemented with high-frequency induction logging isoparametric sounding (VIKIZ) data. As a result of performed analysis, we identified location of the water-bearing stratum, estimated average thickness of the aquifers and possible water-blocking strata. Based on research results, we proposed methods for increasing operational reliability of the main shaft in the designed mine that will minimize the risks of water breakthrough into the mine shaft.
The use of the zonal-block model of the earth's crust for the construction of regional tectonic schemes and sections of the earth's crust based on a complex of geological and geophysical data makes it possible to consider the resulting maps and sections as tectonic models. The main elements of such models are blocks with an ancient continental base and interblock zones formed by complexes of island arcs, an accretionary prism, or oceanic crust. The developed geotectonic model of the Sea of Okhotsk region reflects the features of the deep structure, tectonics, and geodynamics. The Cimmerian Novosibirsk-Chukotka, Verkhoyansk-Kolyma, Kolyma-Omolon, and Amur folded regions and the Alpides of the Koryak-Kamchatka and Sakhalin-Sikhote-Alin folded regions are developed along the northern, western, and southern boundaries of the Sea of Okhotsk megablock with a continental crust type. From the east, the megablock is limited by oceanic basins and island arcs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.