Nanoindentation tests have been conducted on five different polyolefins, comprising a high density polyethylene, a low density polyethylene, a linear low density polyethylene, a polypropylene homopolymer and a polypropylene copolymer. The nanoindenter was fitted with a "Dynamic Stiffness Measurement" (DSM) facility that permits measurement of storage modulus and loss modulus at frequent intervals during an indentation test. The results were quite scattered, especially those for the loss modulus, and methods of processing the data to derive meaningful results were examined and are discussed. The storage modulus measurements were found to give the same stiffness ranking as the monotonic load-displacement data when comparing indentations on the same material. Some correlation was found between the storage modulus and fractional crystallinity. An averaging procedure was developed for the loss modulus values that appeared to give a consistent assessment of the dissipation properties of the different materials. Analysis of the monotonic component of the load-displacement data indicated that the nature of the deformation changed from mainly elastic/viscoelastic to mainly viscoelastic/plastic during the course of the indentation tests. POLYM. ENG. SCI., 46: 1160 -1172, 2006.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.