The nanoplasma formations of Na and Kr clusters, which contained 2 Â 10 7 atoms per cluster, irradiated by intense femtosecond laser field have been predicted in detail within the framework of the modified nanoplasma model. Based on this modified model, ionization process, heating, expansion, and explosion of the cluster have been studied. When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non-neutral ion cloud. The analytic calculation provides time evolution of radius of the cluster, internal and external fields, coulomb and hydrodynamic pressures, electron density, and ion and electron energy. During the coulomb explosion of the resulting highly ionized, hightemperature nanoplasma, ions acquire their energy. It is shown that ultrafast ions are produced in this comparative study (4.4 keV for Kr cluster and 2.2 keV for Na cluster), which can be the source of energetic ions. We have found that the coulomb pressure is little than the hydrodynamic pressure for both clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.