Understanding the dealloying mechanisms of gold-based alloy thin films resulting in the formation of nanoporous gold with a sponge-like structure is essential for the future design and integration of this novel class of material in practical devices. Here we report on the synthesis of nanoporous gold thin films using a free-corrosion approach in nitric acid applied to cosputtered Au-Cu thin films. A relationship is established between the as-grown Au-Cu film characteristics (i.e., composition, morphology, and structure) and the porosity of the sponge-like gold thin films. We further demonstrate that the dealloying approach can be applied to nonhomogenous Au-Cu alloy thin films consisting of periodic and alternate Au-rich/Au-poor nanolayers. In such a case, however, the dealloying process is found to be altered and unusual etching stages arise. Thanks to defects and column boundaries playing the role of channels, the nitric acid is found to quickly penetrate within the films and then laterally (i.e., parallel to the film surface) attacks the nanolayers rather than perpendicularly. As a consequence to this anisotropic etching, the Au-poor layers are etched preferentially and transform into Au pillars holding the Au-rich layers and preventing them against collapsing. A further exposure to nitric acid results in the collapsing of the Au-rich layers accompanied by a transition from a multilayered to a sponge-like structure. A scenario, supported by experimental observations, is further proposed to provide a detailed explanation of the fundamental mechanisms occurring during the dealloying process of films with a multilayered structure.
The growth of nickel/carbon nanocomposite thin films by a hybrid plasma process, which combines magnetron sputtering and plasma enhanced chemical vapor deposition, has been investigated. This study has shown that the films consist of nickel-rich nanostructures embedded in an amorphous carbon matrix. The size, the distribution, the density, and the shape of these nanostructures are directly dependent to the total carbon content within the films. At low carbon content ($28 at. %), dense nanowire array perpendicularly oriented to the surface of the substrate can be fabricated. For an intermediate carbon concentration ($35 at. %), the nickel phase was organized into elongated nanoparticles. These nanoparticles became spherical when reaching a higher carbon content ($54 at. %). The extensive structural study allowed the representation of a structure zone diagram, as well as, the development of a scenario describing the growth mechanisms that take place during the deposition of such nanocomposite material. V C 2012 American Institute of Physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.