In this study, we have employed the first-principle methods based on density functional theory to investigate the structural, electronic and optical properties of Al0.50Ga0.50NxSb1-x in zincblende structure. The exchange and correlation potential is described by the generalized gradient approximation of Perdew, Burke and Ernzerhof (GGA-PBEsol) coupled with TB-mBJ approaches. The studied structures shows that all structures are semiconductors and have a direct bandgap except Al0.50Ga0.50N0.25Sb0.75 which has a semi-metallic behavior. The optical properties such as refractive index, extinction coefficient and optical conductivity are discussed in detail. Our result shows these materials are considered as promising materials for optoelectronic applications in the visible and infrared region. To our knowledge this is the first time that a study has been done on this alloy and we would like it to serve as a reference for the next studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.