The L to H transition in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (IAEA, Vienna, 1987), Vol. I, p. 159] is associated with two clear signatures: edge density fluctuations are abruptly suppressed (in ≊100 μsec), while the edge poloidal rotation velocity vθ increases, implying that the radial electric field Er becomes more negative. Detailed new spectroscopic profile measurements show that the changes in vθ and Er generate a region of sheared electric field and poloidal flow of width ≊3–5 cm. This region develops simultaneously with, and has the same spatial extent as, the edge fluctuation suppression zone as measured using a reflectometer system. Furthermore, the radial extent of the shear and fluctuation suppression zones encompass the location of the H-mode edge transport barrier. These observations are consistent with recent theoretical models of the L–H transition, and a comparison with these theories is presented. Data are also presented on the evolution of edge parameters and density fluctuations after the transition: the shear and fluctuation suppression layers are maintained for the duration of the quiescent H-mode phase, while relative density fluctuation levels decrease and interior plasma confinement gradually improves. Precursors to several different types of edge localized mode (ELMs) are also discussed.
The filamentary nature and dynamics of edge-localized modes (ELMs) in the KSTAR high-confinement mode plasmas have been visualized in 2D via electron cyclotron emission imaging. The ELM filaments rotating with a net poloidal velocity are observed to evolve in three distinctive stages: initial linear growth, interim quasisteady state, and final crash. The crash is initiated by a narrow fingerlike perturbation growing radially from a poloidally elongated filament. The filament bursts through this finger, leading to fast and collective heat convection from the edge region into the scrape-off layer, i.e., ELM crash.
Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence mutually interact via the coupling between the electron temperature (T e ) gradient, the T e turbulence, and the poloidal flow. The T e gradient altered by the magnetic island is peaked outside and flattened inside the island. The T e turbulence can appear in the increased T e gradient regions. The combined effects of the T e gradient and the the poloidal flow shear determine two-dimensional distribution of the T e turbulence. When the reversed poloidal flow forms, it can maintain the steepest T e gradient and the magnetic island acts more like a electron heat transport barrier. Interestingly, when the T e gradient, the T e turbulence, and the flow shear increase beyond critical levels, the magnetic island turns into a fast electron heat transport channel, which directly leads to the minor disruption.
PACS numbers:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.