Abstract. Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the Correspondence to: I. Riipinen (ilona.riipinen@helsinki.fi) large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticleshighlighting the need for representing this process in global climate models.
Abstract. Cloud condensation nuclei (CCN) concentrations were measured at Egbert, a rural site in Ontario, Canada during the spring of 2007. The CCN concentrations were compared to values predicted from the aerosol chemical composition and size distribution using κ-Köhler theory, with the specific goal of this work being to determine the hygroscopic parameter (κ) of the oxygenated organic component of the aerosol, assuming that oxygenation drives the hygroscopicity for the entire organic fraction of the aerosol. The hygroscopicity of the oxygenated fraction of the organic component, as determined by an Aerodyne aerosol mass spectrometer (AMS), was characterised by two methods. First, positive matrix factorization (PMF) was used to separate oxygenated and unoxygenated organic aerosol factors. By assuming that the unoxygenated factor is completely non-hygroscopic and by varying κ of the oxygenated factor so that the predicted and measured CCN concentrations are internally consistent and in good agreement, κ of the oxygenated organic factor was found to be 0.22±0.04 for the suite of measurements made during this five-week campaign. In a second, equivalent approach, we continue to assume that the unoxygenated component of the aerosol, with a mole ratio of atomic oxygen to atomic carbon (O/C) ≈ 0, is completely non-hygroscopic, and we postulate a simple linear relationship between κ org and O/C. Under these assumptions, the κ of the entire organic component for bulk aerosols measured by the AMS can be parameterised as κ org =(0.29±0.05)·(O/C), for the range of O/C observed in this study (0.3 to 0.6). These results are averaged over our five-week study at one location using only the AMS for composition analysis. Empirically, our measurements are consistent with κ org generally increasing with increasing particle oxygenation, but high uncertainties preclude us from testing this hypothesis. Lastly, we examine select periods of different aerosol composition, corresponding to different air mass histories, to determine the generality of the campaign-wide findings described above.
One year of aerosol particle observations from Alert, Nunavut shows that new particle formation (NPF) is common during clean periods of the summertime Arctic associated with attendant low condensation sinks and with the presence of methane sulfonic acid (MSA), a product of the atmospheric oxidation of dimethyl sulfide (DMS). The clean aerosol time periods, defined using the distribution of refractory black carbon number concentrations, increase in frequency from June through August as the anthropogenic influence dwindles. During the clean periods, the number concentrations of particles that can act as cloud condensation nuclei (CCN) increase from June through August suggesting that DMS, and possibly other oceanic organic precursors, exert significant control on the Arctic summertime submicron aerosol, a proposition supported by simulations from the GEOS-Chem-TOMAS global chemical transport model with particle microphysics. The CCN increase for the clean periods across the summer is estimated to be able to increase cloud droplet number concentrations (CDNC) by 23-44 cm -3 , comparable to the mean CDNC increase needed to yield the current global cloud albedo forcing from industrial aerosols. These results suggest that DMS may contribute significantly to modification of the Arctic summer shortwave cloud albedo, and they offer a reference for future changes in the Arctic summer aerosol.
Abstract. Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.