The skin is the largest organ of the body, providing a protective barrier against bacteria, chemicals and physical insults while maintaining homeostasis in the internal environment. Such a barrier function the skin ensures protection against excessive water loss. The skin's immune defence consists of several facets, including immediate, non-specific mechanisms (innate immunity) and delayed, stimulus-specific responses (adaptive immunity), which contribute to fending off a wide range of potentially invasive microorganisms. This article is an overview of all known data about 'fragile skin'. Fragile skin is defined as skin with lower resistance to aggressions. Fragile skin can be classified into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. This article includes the epidemiologic data, pathologic description of fragile skin with pathophysiological bases (mechanical and immunological role of skin barrier) and clinical description of fragile skin in atopic dermatitis, in acne, in rosacea, in psoriasis, in contact dermatitis and other dermatologic pathologies. This article includes also clinical cases and differential diagnosis of fragile skin (reactive skin) in face in adult population. In conclusion, fragile skin is very frequent worldwide and its prevalence varies between 25% and 52% in Caucasian, African and Asian population. Conflicts of interests Funding sourcesNone declared. Epidemiology of fragile skinA recent publication by Haftek describes the results of recent survey realized about 'fragile skin'. Fragile skin was perceived to occur in a substantial proportion of individuals from any given country. The survey was done at 5500 people in a representative sample from the population of five countries: France, Sweden, Spain, Japan and the USA. One of the first results was that all of the respondents were able to answer the question. For them, fragile skin has a very specific meaning. The answers varied depending on the population and their phototypes. Between 25% and 30% of 'Caucasian' respondents (white Europeans), 42% of those with typically 'African' skin and 52% of those with Asian skin reported that their skin was fragile. These people are generally young (around 40% of the European sample were aged 15-34 years) and predominantly female. Fragile skin has an important link to skin pathology, as those who claim their skin is fragile are also more likely to have recently suffered a skin condition, to have acne or to have a history of atopic dermatitis (AD).Those at either end of the age spectrum (babies and elderly patients with dermatoporosis) have generally fragile skin. It can also affect people of all ages in certain areas of the body, such as the eyelids, neck, area around the mouth and areas that receive a lot of sun exposure, such as the d ecollet e or forehead. Dermatologists know th...
Within their first days of life, newborns' skin undergoes various adaptation processes needed to accommodate the transition from the wet uterine environment to the dry atmosphere. The skin of newborns and infants is considered as a physiological fragile skin, a skin with lower resistance to aggressions. Fragile skin is divided into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. Extensive research of the past 10 years have proven evidence that at birth albeit showing a nearly perfect appearance, newborn skin is structurally and functionally immature compared to adult skin undergoing a physiological maturation process after birth at least throughout the first year of life. This article is an overview of all known data about fragility of epidermis in 'fragile populations': newborns, children and adolescents. It includes the recent pathological, pathophysiological and clinical data about fragility of epidermis in various dermatological diseases, such as atopic dermatitis, acne, rosacea, contact dermatitis, irritative dermatitis and focus on UV protection .
Propionibacterium acnes has a major role in the development of acne lesions. IGF-1 stimulates the proliferation of keratinocytes via an activation of the IGF-1 receptor (IGF-1R). Zinc has been proven to work efficiently against inflammatory acne and to modulate the IGF-1 system. Our objectives were to study the modulation of IGF-1 and IGF-1R expression by P. acnes extracts and to determine their modulation by zinc gluconate. In vivo, we analyzed biopsies of acne lesions and healthy skin, and in vitro we used skin explants incubated with two P. acnes extracts--membrane fraction (MF) and cytosolic proteins--with or without zinc. IGF-1 and IGF-1R expression was evaluated using immunohistochemistry, and the IGF-1 production in supernatants was measured by ELISA. Then, IGF-1 and IGF-1R mRNA levels were analyzed using quantitative PCR on normal human epidermal keratinocytes (NHEKs). IGF-1 and IGF-1R were overexpressed in acne lesions. MF increased IGF-1 and IGF-1R expression in the epidermis of explants and was associated with an overexpression of both Ki-67 and filaggrin. Zinc had the effect of downregulating IGF-1 and IGF-1R levels. These observations were confirmed at the mRNA level for IGF-1R in NHEKs. These results demonstrate that P. acnes can induce the formation of comedones by stimulating the IGF/IGF-1R system. Moreover, zinc downregulates this pathway.
Propionibacterium acnes plays an important role in the pathogenesis of acne and it is established that this bacteria is involved in the induction and maintenance of the inflammatory phase of acne. The aim of our work was to determine if P. acnes extracts could modulate integrins and filaggrin in vitro expression by keratinocytes. Integrins and filaggrin expression was examined using immunohistochemistry technique both on Normal Human Epiderminal Keratinocytes (NHEK) and on deep-frozen sections of normal human skin explants incubated with three different P. acnes extracts. In addition, the expression of filaggrin was investigated on biopsies of acne lesions and by western-blot associated with its precursor profilaggrin. We demonstrated that P. acnes extracts induced beta1 integrin expression significantly on both proliferating keratinocytes and differentiated keratinocytes. In addition, P. acnes induced alpha3, alpha6s and alphaVbeta6 integrin expression and filaggrin expression on differentiated keratinocytes. Finally P. acnes extracts increased filaggrin expression by suprabasal layer of epidermis of explants. Western-blot confirmed that total amount of filaggrin was increased. These results indicate that P. acnes extracts are directly able to modulate the differentiation of keratinocytes suggesting that this bacteria play a role not only in the development of inflammatory acne lesions but also in the formation of the microcomedo.
BackgroundAtopic dermatitis (AD) is a common skin disease characterized by recurrent pruritic inflammatory skin lesions resulting from structural and immune defects of the skin barrier. Previous studies have shown the clinical efficacy of Avène thermal spring water in AD, and a new microorganism, Aquaphilus dolomiae was suspected to contribute to these unique properties. The present study evaluated the anti-inflammatory, antipruritic, and immunomodulatory properties of ES0, an original biological extract of A. dolomiae, in immune and inflammatory cell models in order to assess its potential use in the treatment of AD.Materials and methodsAn ES0 extract containing periplasmic and membrane proteins, peptides, lipopolysaccharides, and exopolysaccharides was obtained from A. dolomiae. The effects of the extract on pruritus and inflammatory mediators and immune mechanisms were evaluated by using various AD cell models and assays.ResultsIn a keratinocyte model, ES0 inhibited the expression of the inflammatory mediators, thymic stromal lymphopoietin, interleukin (IL)-18, IL-4R, IL-8, monocyte chemoattractant protein-3, macrophage inflammatory protein-3α, and macrophage-derived chemokine and induced the expression of involucrin, which is involved in skin barrier keratinocyte terminal differentiation. In addition, ES0 inhibited protease-activated receptor-2 activation in HaCaT human keratinocytes stimulated by stratum corneum tryptic enzyme and T helper type (Th) 1, Th2, and Th17 cytokine production in Staphylococcal enterotoxin B–stimulated CD4+ lymphocytes. Lastly, ES0 markedly activated innate immunity through toll-like receptor (TLR) 2, TLR4, and TLR5 activation (in recombinant human embryonic kidney 293 cells) and through antimicrobial peptide induction (psoriasin, human beta-defensin-2, and cathelicidin), mainly through TLR5 activation (in normal human keratinocytes).ConclusionOverall, these in vitro results confirm the marked regulatory activity of this A. dolomiae extract on inflammatory and immune responses, which may be of value by virtue of its potential as an adjunctive treatment of AD inflammatory and pruritic lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.