This paper presents a critical review of the recent improvements in minimizing nuclear waste in terms of quantities, long-term activities, and radiotoxicities by innovative GCRs, with particular emphasis to the results obtained at the University of Pisa. Regarding these last items, in the frame of some EU projects (GCFR, PUMA, and RAPHAEL), we analyzed symbiotic fuel cycles coupling current LWRs with HTRs, finally closing the cycle by GCFRs. Particularly, we analyzed fertile-free and Pu-Th-based fuel in HTR: we improved plutonium exploitation also by optimizing Pu/Th ratios in the fuel loaded in an HTR. Then, we chose GCFRs to burn residual MA. We have started the calculations on simplified models, but we ended them using more “realistic” models of the reactors. In addition, we have added the GCFR multiple recycling option usingkeffcalculations for all the reactors. As a conclusion, we can state that, coupling HTR with GCFR, the geological disposal issues concerning high-level radiotoxicity of MA can be considerably reduced.
Preliminary analyses already performed showed that innovative GCRs, both thermal and fast, are very promising candidate to reach the Gen-IV sustainability goal. The integrated LWR-HTR-GCFR basically aims at closing the current nuclear fuel cycle: in principle, thanks to the unique characteristics of Helium coolant reactors, LWR SNF along with DU become valuable material to produce energy. Additionally, burning HMs of LWR SNF means not only a drastic reduction in the demand but also a remarkable decrease in the long-term radiotoxic component of nuclear waste to be geologically stored. This paper focuses on the analyses of the LWR-HTR-GCFR cycle performed by the University of Pisa in the frame of the EU PUMA project (6th FP). Starting from a brief outline of the main characteristics of HTR and GCFR concepts and of the advantages of linking LWR, HTR and GCFR in a symbiotic way, this paper shows the integrated cycle involving a typical LWR (1000 ), a PBMR (400 ) and a GCFR-“E” (2400 ). Additionally, a brief overview of the main technological constraints concerning (Pu+MA)-based advanced fuels is given, in order to explain and justify the choices made in the framework of the considered cycle. Thereafter, calculations performed and results obtained are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.