Nanomolar concentrations of celecoxib can inhibit VEGF mRNA and protein expression from ARPE-19 cells. Periocular celecoxib microparticles are useful sustained drug delivery systems for inhibiting diabetes-induced elevations in PGE2, VEGF, and blood-retinal barrier leakage. The periocular celecoxib-PLGA microparticles are safe and do not cause any damage to the retina.
Transscleral retinal and vitreal drug delivery of lipophilic celecoxib is significantly lower in pigmented rats than in albino rats. This difference may be attributable to significant binding of celecoxib to melanin and its accumulation/retention in the melanin-rich choroid-RPE of pigmented rats. The hindrance of retinal and vitreal drug delivery by the choroid-RPE in pigmented rats is also true of sustained-release microparticle systems.
The choroid-Bruch's layer is a more significant barrier to drug transport than is sclera. It hinders the transport of lipophilic solutes, especially a cationic solute, more than hydrophilic solutes and in a more dramatic way than does sclera. The reduction in transport across this layer directly correlates with solute binding to the tissue. Understanding the permeability properties of sclera and underlying layers would be beneficial in designing better drugs for transscleral delivery.
Owing to the presence of pigment and drug binding, choroid-RPE is the principal barrier to transscleral β-blocker transport, with the barrier being more significant for lipophilic β-blockers. Although different in magnitude between species, sclera/SCRPE transport can be correlated between species. Tissue thickness accounts for the species differences in scleral transport. Differences in tissue thickness and melanin content largely account for the species differences in SCRPE transport.
Large-porous deslorelin PLGA particles can sustain deslorelin delivery via the deep lungs. Co-administration of HPbetaCD enhances the systemic delivery of deslorelin. The pulmonary route is useful as a noninvasive alternative for the systemic delivery of deslorelin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.