We investigate a hybrid re-configurable three dimensional metamaterial based on liquid crystal as tuning element in order to build novel devices operating in the terahertz range. The proposed metadevice is an array of meta-atoms consisting of split ring resonators having suspended conducting cantilevers in the gap region. Adding a “third dimension” to a standard planar device plays a dual role: (i) enhance the tunability of the overall structure, exploiting the birefringence of the liquid crystal at its best, and (ii) improve the field confinement and therefore the ability of the metadevice to efficiently steer the THz signal. We describe the design, electromagnetic simulation, fabrication and experimental characterization of this new class of tunable metamaterials under an externally applied small voltage. By infiltrating tiny quantities of a nematic liquid crystal in the structure, we induce a frequency shift in the resonant response of the order of 7–8% in terms of bandwidth and about two orders of magnitude change in the signal absorption. We discuss how such a hybrid structure can be exploited for the development of a THz spatial light modulator.
In many resonant structures the damping of parasitic or higher order modes is indispensable to guarantee a correct and stable performance. This is particularly true in the microwave region in case of cavities or other resonant systems operating in accelerating structures, where the mitigation of spurious resonance effects is mandatory to achieve high quality particle beams. We present the results on the mode suppression in a real pillbox cavity by inserting a properly designed pyramidal metamaterial that acts as light, small volume damper for specific resonances in the range 3–4 GHz, only slightly perturbing other intrinsic modes. Measurements of the cavity response without and with the metamaterial absorber are presented and compared with full wave simulations. Field distribution for the pillbox intrinsic modes under scrutiny is also presented, showing that damping induced by the metamaterial critically depends on its relative position inside the cavity.
Large frequency tunability is achieved by combining a planar metamaterialbased device with a liquid crystal (LC) having a relatively high birefringence. The device is based on the exploitation of the LC molecule reorientation under an applied electric fi eld to change the permittivity of different capacitors present in the sub-wavelength unit cells. The whole system is designed to obtain a maximum signal frequency shift close to 10 % around the operational frequency of 1 THz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.