1. Quantitative O-deacylation of phospholipids has been achieved by incubation with a reagent containing monomethylamine, methanol and water. The reaction is primarily an O leads to N-transacylation with N-methyl fatty acid amides being formed. 2. The reagent can be removed easily by volatilization and under defined conditions no secondary decomposition of the phosphorus-containing deacylation products occurs. 3. The water-soluble phosphorus compounds derived by deacylation of mammalian tissue O-diacylated phospholipids have been completely separated by a single-dimensional paper ionophoresis with a volatile pH9 buffer. 4. The O-deacylated alkyl and alkenyl phospholipids have been examined by t.l.c. before and after catalytic hydrolysis with Hg2+. 5. A complete analysis of rat brain phospholipids by the above methods agrees closely with that obtained by other procedures.
1. An enzyme in extracts of mammalian tissues catalyses the hydrolysis of d-myoinositol 1:2-cyclic phosphate (an intermediary in the enzymic degradation of phosphatidylinositol) to produce d-myoinositol 1-phosphate. 2. The enantiomorph of the substrate is not attacked. 3. The pH optimum is about 8.1-8.3 and the reaction is stimulated by Mg(2+) ions. 4. Extracts from rat kidney cortex and medulla are very rich sources of the enzyme; brain, testis and small intestine contain intermediary activities, and other tissues contain very small amounts.
The nuclear restructuring that occurs between insemination and full pronuclear formation in pig eggs is accompanied by posttranslational changes to specific egg proteins. Sperm penetration begins in vitro at 3 hr postinsemination (hpi). By 5 hr, decondensing sperm heads and anaphase II plates are observed in 50% of eggs, and, by 8 hpi, both male and female pronuclei have formed. Three consistent changes to the pattern of newly synthesised proteins are triggered in this period; they affect the 46K, 25K, and 22K polypeptides. Changes are also triggered in the 180–200K polypeptides and in the 14K polypeptides, but these are highly variable. The same changes in the prefertilization pattern were observed when prelabelled eggs were used and new protein synthesis was suppressed. The first and most abrupt change involves the apparent catabolic elimination of a group of 46K unphosphorylated polypeptides (pl 7.3–6.4), whose synthesis was greatest before germinal vesicle breakdown but declined slowly in the final phase of maturation, then declined precipitously after activation. Ageing (beyond maturation) also leads to the disappearance of these polypeptides. The progressive disappearance of a set of 25K polypeptides and the concomitant appearance of a dominant 22K polypeptide is the most characteristic fertilization‐induced modification to porcine egg proteins. These modifications begin within 1 hr of sperm penetration or activation, are specific to the pig, and involve heavily phosphorylated polypeptides (25K, pl 6.7–6.0) whose synthesis is begun in the early metaphase I stage. Dual ([35S] and [32P]) labelling, protein blocking experiments, and use of alkaline phosphatase suggest that dephosphorylation selectively affects these 25K polypeptides and is mainly or wholly responsible for converting them (completely within 6 hr) to a single, new (22K, pl 7.6) species that is positively charged. The 25K/22K polypeptide modification has a close temporal relationship with the formation of the male and female pronuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.