Motivated by biotechnological prospects, there is increasing evidence that we may just be scraping the tip of the iceberg of poisonous marine invertebrates, among which the Polychaeta are promising candidates for bioprospecting. Here we show that an inconspicuous phyllodocid uses toxins in its uncanny feeding strategy. The worm, a jawless active predator characterised by its bright green colour, preys on larger invertebrates (including conspecifics) by extracting tissue portions with its powerful proboscis through suction. The animal is even able to penetrate through the valves and plates of live molluscs and barnacles. Observations in situ and a series of experiments demonstrated that the worm compensates its simple anatomy with secretion of a novel toxin, or mixture of toxins, referred to by us as “phyllotoxins”. These are carried by mucus and delivered via repeated contact with the tip of the proboscis until the prey is relaxed or immobilised (reversibly). Proteolytic action permeabilises material to toxins and softens tissue to enable extraction by suction. The findings show that toxins are a major ecological trait and therefore play a key role in evolutionary success and diversification of Polychaeta, demonstrating also that understanding adaptative features may become the best showcase for novel animal toxins.
Estuaries, coastal lagoons and other transition ecosystems tend to become the ultimate reservoirs of pollutants transported by continental runoff, among which pesticides constitute the class of most concern. High amounts of dissolved and particulated organic matter greatly contribute to the accumulation of pesticides that eventually become trapped in sediments or find their way along food chains. Perhaps not so surprisingly, it is common to find elevated levels of pesticides in estuarine sediments decades after their embargo. Still, it remains challenging to address ecotoxicity in circumstances that invariably imply mixtures of contaminants and multiple factors affecting bioavailability. Despite advances in methods for detecting pesticides in waters, sediments and organisms, chemical data alone are insufficient to predict risk. Many researchers have been opting for ex situ bioassays that mimic the concentrations of pesticides in estuarine waters and sediments using a range of ecologically relevant model organisms, with emphasis on fish, molluscs and crustaceans. These experimental procedures unravelled novel risk factors and important insights on toxicological mechanisms, albeit with some prejudice of ecological relevance. On the other hand, in situ bioassays, translocation experiments and passive biomonitoring strive to spot causality through an intricate mesh of confounding factors and cocktails of pollutants. Seemingly, the most informative works are integrative approaches that combine different assessment strategies, multiple endpoints and advanced computational and geographical models to determine risk. State-of-art System Biology approaches combining high-content screening approaches involving "omics" and bioinformatics, can assist discovering and predicting novel Adverse Outcome Pathways that better reflect the cumulative risk of persisting and emerging pesticides among the wide range of stressors that affect estuaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.