Worldwide population aging and associated with it epidemics of osteoporosis, widespread of bone and joint reconstructive surgery and first of all joint replacement lead to explosive growth of interest in bone grafting.Although autografts are still the golden standard in bone regeneration, allogeneic bone substitutes have reached a state that allows for their application with satisfying clinical results. However, it has repeatedly been supposed that the different allogeneic materials underwent different purification processes, which modifies bone regeneration properties of these materials and also for different safety conditions. In the present publication, the treatment of the precursor tissue, the safety conditions, and the regenerative possibilities of C+TBA bone blocks based in preclinical and clinical data are described. Thus, it is described how the risks of infections and also immunological reactions becomes completely eliminated, while the special purification process allows for preservation of the native structure of the bone block. Both the in vitro studies and the clinical trials including histological follow-ups showed the optimal regeneration properties of these bone blocks. It has been shown that the allogeneic bone grafts have been integrated without causing inflammatory anomalies at the implantation site. Altogether, the allogeneic bone substitute material serves as an excellent basis for the formation of new bone. Finally, the combination of the allogeneic C+TBA bone blocks with different antibiotics is described. Interestingly, it is possible to combine the allogeneic bone substitute ether with antibiotics in the sense of prophylaxis and/or with bone marrow aspirate in order to accelerate bone remodeling.
IntroductionThe purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs) with low molecular weight hyaluronic acid (HA) could promote regeneration of massive cartilage in rabbits.Material and methodsThe SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek). The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml) were suspended in 0.5% low molecular weight HA (0.15 ml) and injected into the left knee, and HA solution (0.30 ml) alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days.ResultsOn day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC-treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage.ConclusionThus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.
Цель исследования: проанализировать результаты оперативного лечения с применением усовершенствованного фиксатора для остеосинтеза вертельных переломов бедренной кости.
The article discusses the problematic issues of cardiovascular pathology in rheumatoid arthritis. The latest data on the influence of traditional risk factors for cardiovascular pathology, autoimmune chronic inflammation, antirheumatic drugs on the development of cardiovascular complications are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.