Combined free and forced convection heat transfer from a horizontal circular cylinder to a transverse flow is analysed for the case when the forced flow is either in the direction of the free convection flow (parallel flow) or in the direction opposite to it (counter flow). The problem is solved for two cases: (1) a specified surface temperature variation and (2) a specified wall heat flux variation along the circumference. A coordinate perturbation method is used to transform the governing set of partial differential equations into a system of ordinary differential equations, which are solved by numerical methods. The numerical work is done for the boundary conditions of constant surface temperature and constant wall heat flux. The variation of local heat transfer coefficient and wall shear stress along the circumference up to the point of separation and velocity and temperature profiles in the boundary layer are obtained for varying values of the governing parameters Gr/Re2 in the constant temperature case (or Gr/Re2 in the constant heat flux case) and Pr.
One of the advantages of a contra-rotating fan is its possibility to operate both the rotors at different speeds. Owing to this possibility, the performance of a contra-rotating fan can be controlled by operating it at different speed combinations. A numerical study of a low aspect ratio contra-rotating fan in low subsonic regime is carried out under various speed combinations of the rotors. Both steady state and Nonlinear Harmonic (NLH) simulations are performed to identify the important flow mechanisms in the contra-rotating fan. The results show that the diffusion factor of rotor-2 is significantly high towards the hub region which implies that large separations are likely to occur at the hub. The wake of rotor-1 is observed to impinge on the suction surface of rotor-2. Rotor-2 generates a strong suction effect at high rotational speeds and thereby delays the stall inception in the whole stage and shows an improvement in the stage pressure ratio. The upstream effect strongly influences the performance of rotor-1. When rotor-2 rotates at higher rotational speed, due to the suction effect, the flow angle at the exit of rotor-1 decreases which allows the fan to operate at lower flow coefficient. When the suction effect is very strong, it pulls the tip leakage vortex of rotor-1 towards the axial direction. Due to the suction effect, the location of the appearance of tip-leakage vortex moves further downstream. The tip-leakage vortex makes a higher angle with the blade chord at near stall conditions for speed combination Nd – 1.5Nd in contrast to a lower angle for speed combination Nd – 0.5Nd. In summary, the paper describes the performance changes, flow physics and the rotor-rotor interaction mechanisms for different speed combinations of a contra-rotating fan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.