A fungicide resistance model (reported and tested previously) was amended to describe the development of resistance in Mycosphaerella graminicola populations in winter wheat (Triticum aestivum) crops in two sets of fields, connected by spore dispersal. The model was used to evaluate the usefulness of concurrent, alternating, or mixture use of two high-resistance-risk fungicides as resistance management strategies. We determined the effect on the usefulness of each strategy of (i) fitness costs of resistance, (ii) partial resistance to fungicides, (iii) differences in the dose-response curves and decay rates between fungicides, and (iv) different frequencies of the double-resistant strain at the start of a treatment strategy. Parameter values for the quinine outside inhibitor pyraclostrobin were used to represent two fungicides with differing modes of action. The effectiveness of each strategy was quantified as the maximum number of growing seasons that disease was effectively controlled in both sets of fields. For all scenarios, the maximum effective lives achieved by the use of the strategies were in the order mixtures ≥ alternation ≥ concurrent use. Mixtures were of particular benefit where the pathogen strain resistant to both modes of action incurred a fitness penalty or was present at a low initial frequency.
This paper reviews the evidence relating to the question: does the risk of fungicide resistance increase or decrease with dose? The development of fungicide resistance progresses through three key phases. During the 'emergence phase' the resistant strain has to arise through mutation and invasion. During the subsequent 'selection phase', the resistant strain is present in the pathogen population and the fraction of the pathogen population carrying the resistance increases due to the selection pressure caused by the fungicide. During the final phase of 'adjustment', the dose or choice of fungicide may need to be changed to maintain effective control over a pathogen population where resistance has developed to intermediate levels. Emergence phase: no experimental publications and only one model study report on the emergence phase, and we conclude that work in this area is needed. Selection phase: all the published experimental work, and virtually all model studies, relate to the selection phase. Seven peer reviewed and four non-peer reviewed publications report experimental evidence. All show increased selection for fungicide resistance with increased fungicide dose, except for one peer reviewed publication that does not detect any selection irrespective of dose and one conference proceedings publication which claims evidence for increased selection at a lower dose. In the mathematical models published, no evidence has been found that a lower dose could lead to a higher risk of fungicide resistance selection. We discuss areas of the dose rate debate that need further study. These include further work on pathogen-fungicide combinations where the pathogen develops partial resistance to the fungicide and work on the emergence phase.
This study used mathematical modeling to predict whether mixtures of a high-resistance-risk and a low-risk fungicide delay selection for resistance against the high-risk fungicide. We used the winter wheat and Mycosphaerella graminicola host-pathogen system as an example, with a quinone outside inhibitor fungicide as the high-risk and chlorothalonil as the low-risk fungicide. The usefulness of the mixing strategy was measured as the "effective life": the number of seasons that the disease-induced reduction of the integral of canopy green area index during the yield forming period could be kept <5%. We determined effective lives for strategies in which the dose rate (i) was constant for both the low-risk and high-risk fungicides, (ii) was constant for the low-risk fungicide but could increase for the high-risk fungicide, and (iii) was adjusted for both fungicides but their ratio in the mixture was fixed. The effective life was highest when applying the full label-recommended dose of the low-risk fungicide and adjusting the dose of the high-risk fungicide each season to the level required to maintain effective control. This strategy resulted in a predicted effective life of ≤ 12 years compared with 3 to 4 years when using the high risk fungicide alone.
Fungicide-resistance management would be more effective if principles governing the selection of resistant strains could be determined and validated. Such principles could then be used to predict whether a proposed change to a fungicide application program would decrease selection for resistant strains. In this review, we assess a governing principle that appears to have good predictive power. The principle states that reducing the product of the selection coefficient (defined as the difference between the per capita rate of increase of the sensitive and resistant strains) and the exposure time of the pathogen to the fungicide reduces the selection for resistance. We show that observations as well as modeling studies agree with the predicted effect (i.e., that a specific change to a fungicide program increased or decreased selection or was broadly neutral in its effect on selection) in 84% of the cases and that only 5% of the experimental results contradict predictions. We argue that the selection coefficient and exposure time principle can guide the development of resistance management tactics.
Many studies exist about the selection phase of fungicide resistance evolution, where a resistant strain is present in a pathogen population and is differentially selected for by the application of fungicides. The emergence phase of the evolution of fungicide resistance - where the resistant strain is not present in the population and has to arise through mutation and subsequently invade the population - has not been studied to date. Here, we derive a model which describes the emergence of resistance in pathogen populations of crops. There are several important examples where a single mutation, affecting binding of a fungicide with the target protein, shifts the sensitivity phenotype of the resistant strain to such an extent that it cannot be controlled effectively (‘qualitative’ or ‘single-step’ resistance). The model was parameterized for this scenario for Mycosphaerella graminicola on winter wheat and used to evaluate the effect of fungicide dose rate on the time to emergence of resistance for a range of mutation probabilities, fitness costs of resistance and sensitivity levels of the resistant strain. We also evaluated the usefulness of mixing two fungicides of differing modes of action for delaying the emergence of resistance. The results suggest that it is unlikely that a resistant strain will already have emerged when a fungicide with a new mode of action is introduced. Hence, ‘anti-emergence’ strategies should be identified and implemented. For all simulated scenarios, the median emergence time of a resistant strain was affected little by changing the dose rate applied, within the range of doses typically used on commercial crops. Mixing a single-site acting fungicide with a multi-site acting fungicide delayed the emergence of resistance to the single-site component. Combining the findings with previous work on the selection phase will enable us to develop more efficient anti-resistance strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.