Abstract. We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NO x = NO + NO 2 ), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) dur- Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NO x mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NO x distributions deviate significantly from the observations. The too-fast and early downward propagation of the NO x tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, uppermesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NO x fluxes. As a consequence, the magnitude of the simulated NO x tongue is generally underestimated by these models. Descending NO x amounts simulated with mediumtop models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NO x upper boundary condition is applied. In general, the intercomparison demonstrates the ability of stateof-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NO x , CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.
<p><strong>Abstract.</strong> We compare simulations from three high-top (with upper lid above 120&#8201;km) and five medium-top (with upper lid around 80km) atmospheric models with observations of odd nitrogen (NO<sub>x</sub> = NO + NO<sub>2</sub>), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3d Chemistry Transport model (3dCTM), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modeling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NO<sub>x</sub> largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NO<sub>x</sub> descent into the lower mesosphere and stratosphere is generally reproduced within 20&#8201;%. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NO<sub>x</sub> mixing ratio at the uppermost model layer and low vertical resolution. In March&#8211;April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too fast and early downward propagation of the NO<sub>x</sub> tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2&#8211;0.05&#8201;hPa) being likely caused by an overestimation of descent velocities. On the other hand, upper mesospheric temperatures (at 0.05&#8211;0.001&#8201;hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too slow descent and hence too low NO<sub>x</sub> fluxes. As a consequence, the magnitude of the simulated NO<sub>x</sub> tongue is generally underestimated by these models. Descending NO<sub>x</sub> amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NO<sub>x</sub> upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NO<sub>x</sub>, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.</p>
Embedded in a winter with high wave activity, we found two subtropical Rossby wave trains in the troposphere before the major sudden stratospheric warming event in January 2003. These Rossby waves propagated north-eastwards and maintained two upper tropospheric anticyclones. At the same time, the amplification of an upward propagating planetary wave 2 in the upper troposphere and lower stratosphere was observed, which could be caused primarily by those two wave trains. Furthermore, two extratropical Rossby wave trains over the North Pacific Ocean and North America were identified a couple of days later, which contribute mainly to the vertical planetary wave activity flux just before and during the major warming event. It is shown that these different tropospheric forcing processes caused the major warming event and contributed to the splitting of the polar vortex.
Abstract. The features of dynamical processes and changes in the ozone layer in the Arctic stratosphere during the winter-spring season 2019–2020 are analyzed using ozonesondes, reanalysis data and numerical experiments with a chemistry-transport model (CTM). Using the trajectory model of the Central Aerological Observatory (TRACAO) and the ERA5 reanalysis ozone mixing ratio data, a comparative analysis of the evolution of stratospheric ozone averaged along the trajectories in the winter-spring seasons of 2010–2011, 2015–2016, and 2019–2020 was carried out, which demonstrated that the largest ozone loss at altitudes of 18–20 km within stratospheric polar vortex in the Arctic in winter-spring 2019–2020 exceeded the corresponding values of the other two winter-spring seasons 2010–2011 and 2015–2016 with the largest decrease in ozone content in recent year. The total decrease in the column ozone inside the stratospheric polar vortex, calculated using the vertical ozone profiles obtained based on the ozonesondes data, in the 2019–2020 winter-spring season was more than 150 Dobson Units, which repeated the record depletion for the 2010–2011 winter-spring season. At the same time, the maximum ozone loss in winter 2019–2020 was observed at lower levels than in 2010–2011, which is consistent with the results of trajectory analysis and the results of other authors. The results of numerical calculations with the CTM with dynamical parameters specified from the MERRA-2 reanalysis data, carried out according to several scenarios of accounting for the chemical destruction of ozone, indicated that both dynamical and chemical processes make contributions to ozone loss inside the polar vortex. In this case, dynamical processes predominate in the western hemisphere, while in the eastern hemisphere chemical processes make an almost equal contribution with dynamical factors, and the chemical depletion of ozone is determined not only by heterogeneous processes on the surface of the polar stratospheric clouds, but by the gas-phase destruction in nitrogen catalytic cycles as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.