Assessment of upper limb function, kinematic analysis, and dystonia in patients with spastic diplegia cerebral palsy and periventricular leukomalacia. Seven children with spastic diplegia cerebral palsy and 8 controls underwent upper limb kinematics. Movement duration, average and maximum linear velocity, index of curvature, index of dystonia, and target accuracy and stability were analyzed. In the patients with spastic diplegia, Gross Motor Function and Manual Ability Classification Systems were determined, and spasticity and dystonia were rated using the Modified Ashworth and the Burke-Fahn-Marsden Dystonia scales respectively. Children with spastic diplegia demonstrated a tendency toward higher index of dystonia reflecting overflow, higher index of curvature, lower velocities, and poor target accuracy and stability. All patients showed clinical evidence of dystonia in the upper limbs. Dystonia scores correlated with the Manual Ability Classification System (r = 0.86, P = .01) and with the index of dystonia (r = 0.82, P = .02). Children with spastic diplegia cerebral palsy present dystonia in the upper limbs. This is functionally relevant and can be measured with kinematic analysis.
The objective of this study was to capture and analyze the kinetics and kinematics and determine the functional performance of the osteoarthritic knee after a posterior cruciate ligament (PCL) retaining total knee arthroplasty. Kinematic and kinetic gait analysis of level walking was performed in 20 subjects (12 female and 8 male) with knee ostoarthritis. These patients were free of any neurological diseases that could affect their normal gait. Mean age was 69.6 ± 6.6 years; mean height was 157.6 cm ± 7.6 cm; and mean weight was 77.2 ± 12.1 kg. Full body gait analyses were performed using the BIOKIN 3D motion analysis system before and 9 months after total knee arthroplasty procedures. Single-step ascending kinetic analyses and plantar pressure distribution analyses were also performed for all subjects. International Knee Society Scores (IKSSs) were also assessed pre- and postoperatively. Significant increases were noted postoperatively in average cadence (preoperative mean = 99.26, postoperative mean = 110.5; p < 0.004), step length (preoperative mean = 0.49, postoperative mean = 0.54; p < 0.01) , and walking velocity (preoperative mean = 0.78, preoperatively, postoperative mean = 0.99; p < 0.001). Decreases in stance duration percentage and knee adduction moment were also reported postoperatively. All patients showed a significant improvement of knee kinetics and kinematics after a PCL retaining total knee arthroplasty. Significant differences were found in the cadence, step length, stride length, and walk velocity postoperatively. IKSSs also significantly improved. Further research is warranted to determine the clinical relevance of these findings.
This cross-sectional study aimed to examine the development of lower limb voluntary strength in 160 ambulatory patients with bilateral spastic cerebral palsy (CP) (106 diplegics/54 quadriplegics) and 86 typically developing (TD) controls, aged 7–16 years. Handheld dynamometry was used to measure isometric strength of seven muscle groups (hip adductors and abductors, hip extensors and flexors, knee extensors and flexors, and ankle dorsiflexors); absolute force (AF) values in pounds were collected, which were then normalized to body weight (NF). AF values increased with increasing age (p < 0.001 for all muscle groups), whereas NF values decreased through adolescence (p < 0.001 for all muscle groups except for hip abduction where p = 0.022), indicating that increases in weight through adolescence led to decreases in relative force. Both AF and NF values were significantly greater in TD subjects when compared with children with CP in all muscle and all age groups (p < 0.001). Diplegics and quadriplegics demonstrated consistently lower force values than TD subjects for all muscle groups, except for the hip extensors where TD children had similar values with diplegics (p = 0.726) but higher than quadriplegics (p = 0.001). Diplegic patients also exhibited higher values than quadriplegics in all muscles, except for the knee extensors where their difference was only indicative (p = 0.056). The conversion of CP subjects' force values as a percentage of the TD subjects' mean value revealed a pattern of significant muscle strength imbalance between the CP antagonist muscles, documented from the following deficit differences for the CP muscle couples: (hip extensors 13%) / (hip flexors 32%), (adductors 27%) / (abductors 52%), and (knee extensors 37%) / (knee flexors 53%). This pattern was evident in all age groups. Similarly, significant force deficiencies were identified in GMFCS III/IV patients when compared with TD children and GMFCS I/II patients. In this study, we demonstrated that children and adolescents with bilateral CP exhibited lower strength values in lower limb muscles when compared with their TD counterparts. This difference was more prevalent in quadriplegic patients and those with a more severe impairment. An important pattern of muscle strength imbalance between the antagonist muscles of the CP subjects was revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.