First discovered in 1966 as an inflammatory cytokine, MIF (macrophage migration inhibitory factor) has been extensively studied for its pivotal role in a variety of inflammatory diseases, including rheumatoid arthritis and atherosclerosis. Although initial studies over a decade ago reported increases in circulating MIF levels following acute MI (myocardial infarction), the dynamic changes in MIF and its pathophysiological significance following MI have been unknown until recently. In the present review, we summarize recent experimental and clinical studies examining the diverse functions of MIF across the spectrum of acute MI from brief ischaemia to post-infarct healing. Following an acute ischaemic insult, MIF is rapidly released from jeopardized cardiomyocytes, followed by a persistent MIF production and release from activated immune cells, resulting in a sustained increase in circulating levels of MIF. Recent studies have documented two distinct actions of MIF following acute MI. In the supra-acute phase of ischaemia, MIF mediates cardioprotection via several distinct mechanisms, including metabolic activation, apoptosis suppression and antioxidative stress. In prolonged myocardial ischaemia, however, MIF promotes inflammatory responses with largely detrimental effects on cardiac function and remodelling. The pro-inflammatory properties of MIF are complex and involve MIF derived from cardiac and immune cells contributing sequentially to the innate immune response evoked by MI. Emerging evidence on the role of MIF in myocardial ischaemia and infarction highlights a significant potential for the clinical use of MIF agonists or antagonists and as a unique cardiac biomarker.
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.