Information on the addition of lipase and/or emulsifiers to less digestible or saturated fat sources, such as tallow or other animal fats, used in swine feeding is very limited. Therefore, in a 4 × 4 Latin square design, the effects of adding lipase (0.05% L5, microbial source) and/or an emulsifier (0.3% Lysoforte) on the apparent ileal (AID) and faecal (AFD) digestibility of the main nutrients and fatty acids in particular were studied with four ileal-cannulated growing pigs (female, initial live weight 20 kg) fed diets containing barley/soybean meal supplemented with 4% animal fat. The fat source contained 35% saturated (S) and 65% unsaturated (U) fatty acids. All diets were free of antibacterial substances (antibiotics, copper sulphate or zinc oxide beyond requirements), in order to avoid interactions between the parameters studied and the gut flora. Lipase addition did not affect the AID or AFD of fat. However, the digestibility of minor fatty acids (C6:0, C14:0) was significantly improved by lipase at both ileal and faecal level. On the other hand, lipase supplementation (P < 0.05) improved the AID of dry matter (DM) and energy as well as the AFD of DM, organic matter (OM), crude protein (CP), ash and energy. Addition of an emulsifier did not have any significant influence on the AID or AFD of fat, while the AID values of DM, OM, CP and energy as well as the AFD values of DM, OM, CP and ash were significantly (P < 0.05) improved. Adding lipase in combination with an emulsifier to the diets decreased (P < 0.05) the AID and AFD of fat, with minor effects on the AID and AFD of the non-fat components of the diet. The lack of improvement in the digestion of fat by exogenous lipase and/or emulsifier may be related to the rather high U/S ratio (0.65:0.35) of the animal fat source used and to the mode of incorporation of the emulsifier (no pre-dispersion in the fat source). Furthermore, during the trial the diets, stored at room temperature, showed a steady increase in their content of free fatty acids (to more than 700 g kg −1 fat), due to endogenous lipase activity, leaving less room for upgrading the digestion of animal fat by exogenous lipase and/or emulsifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.