The self-assembly behavior of a commercial mixture of polyglycerol fatty acid esters (PGE) and water is investigated as a function of temperature and surfactant content. The phase diagram of this pseudo-binary mixture was characterized using a combination of cross-polarized light and freeze-fracture electron microscopy (cryo-SEM), X-ray diffraction (XRD), small-angle neutron scattering (SANS), and differential scanning calorimetry (DSC). Our experiments show that the morphology of the supramolecular aggregates is lamellar and present in the form of a continuous or dispersed phase (multilamellar vesicles) depending on the water content of the system. Under the effect of temperature, the short- and long-range order of the bimolecular layers successively changes from a biphasic surfactant dispersion to a lamellar liquid-crystalline (Lalpha) and a stable lamellar gel phase (Lbeta) upon cooling; this transition is found to be irreversible. Formation of the lamellar aggregates can be related to the average molecular structure and shape factor of PGE. The stability of the resulting gel phase (Lbeta) appears to be due to the presence of small amounts of unreacted ionic co-surfactant, namely, fatty acid soaps, in this per se nonionic commercial mixture.
We studied the structure and mechanical properties of surface films resulting from the adsorption of a dispersed L beta phase at the air-water interface. This L beta phase corresponds to multilamellar vesicles and is formed by a commercial polyglycerol fatty acid ester (PGE) in aqueous solution at temperatures below the main chain-melting temperature (Tm=58 degrees C). We measured the adsorption kinetics using the pendant drop technique and mechanical properties of PGE films using oscillatory surface shear and dilatational rheometric methods. Though the adsorption kinetics are very slow, we show that the L beta phase of PGE is surface-active and forms viscoelastic films at the air-water surface after sufficiently long adsorption times. The rheological response functions to shear and dilatational deformation are reminiscent of those of temporary networks, indicating an intermolecular connectivity at the surface. This temporary network is probably created by hydrophobic interactions of alkyl chains. We obtained more detailed information about the properties of this network by comparing the rheological signature of an adsorbed PGE film (unknown structure) with a solvent-spread monolayer (known structure). We characterized the structural features of spread PGE films by recording the Langmuir isotherm and Brewster angle micrographs (BAM).We show that the rheological responses of the adsorbed film and the solvent-spread monolayer are very close to each other, indicating a structural similarity. From this study, we conclude that a dispersed L beta phase of PGE is able to adsorb at the air-water surface at T
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.