We report a nonrelativistic self-consistent, all-electron, local-density-functional calculation of the electronic structure of silver. The linear combination of Gaussian orbitals method is used. We present our results for the band structure, density of states, Fermi surface, Compton profiles, and optical conductivity. Our results are compared with experiments and with other calculations where possible.
We have developed a geometric clustering algorithm using backbone φ,ψ angles to group conformationally similar peptide fragments of any length. By labeling each fragment in the cluster with the level-specific Gene Ontology 'molecular function' term of its protein, we are able to compute statistics for molecular function-propensity and p-value of individual fragments in the cluster. Clustering-cum-statistical analysis for peptide fragments 8 residues in length and with only trans peptide bonds shows that molecular function propensities ≥20 and p-values ≤0.05 can dissect fragments within a protein linked to the molecular function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.