A continuous method is presented for representing the mode interaction that occurs in frequency veering in terms of the nominal sector modes of a cyclic symmetric bladed disk model constrained at a reference interblade phase angle. Using this method, the effect of frequency veering on the mode shapes can be considered in the context of the generalized forces exciting the system and the modal response of the bladed disk. It is shown that in a blade-dominated family of modes, the transfer of modal energy to the disk in the veering results in a lower generalized force exciting the mode as well as reduced response amplitude in the blade. For the disk-dominated modes, the sharing of modal energy with the blades can lead to the disk being excited by aerodynamic loading. These effects can have important implications for predicting and interpreting forced response in bladed disks. Numerical examples are provided to illustrate these concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.