A relative ability of industrial samples of four phosphorus-free polymers (polyaspartate (PASP); polyepoxysuccinate (PESA); polyacrylic acid sodium salt (PAAS); copolymer of maleic and acrylic acid (MA-AA)) and of three phosphonates (aminotris(methylenephosphonic acid), ATMP; 1-hydroxyethane-1,1-bis(phosphonic acid), HEDP; phosphonobutane-1,2,4-tricarboxylic acid, PBTC) to inhibit calcium sulfate precipitation is studied following the NACE Standard along with dynamic light scattering (DLS), scanning electron microscopy (SEM), and X-ray diffraction (XRD) technique. For the 0.5 mg·dm−3dosage, the following efficiency ranking was found:MA-AA~ATMP>PESA (400–1500 Da)>PASP (1000–5000 Da)≫PAAS (3000–5000 Da)~PBTC~HEDP. The isolated crystals are identified as gypsum. SEM images for PESA, PASP, PAAS, and HEDP and for a blank sample indicated the needle-like crystal morphology. Surprisingly, the least effective reagent PBTC revealed quite a different behavior, changing the morphology of gypsum crystals to an irregular shape. The DLS experiments exhibited a formation of 300 to 700 nm diameter particles with negativeζ-potential around −2 mV for all reagents.Although suchζ-potential values are not capable of providing colloidal stability, all three phosphonates demonstrate significant gypsum particles stabilization relative to a blank experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.