The incorporation of an ultrathin, atomic layer deposited HfO2 layer in between the spin-coated poly-4-vinyl phenol (PVP) organic layers in the laminated multilayer gate dielectric for pentacene organic thin film transistors on a flexible substrate reduced the gate leakage current by three to four orders of magnitude and thereby significantly enhanced the current on/off ratio up to ≅104-fold. Cyclic bending testing indicated that the electrical characteristics of the device with the PVP∕HfO2∕PVP trilayer gate dielectric stack were superior to those of the device with the single PVP gate dielectrics due to the improved mechanical and electrical stabilities of the gate dielectric.
The organic thin film transistor (OTFT) on flexible substrate electroplated electrodes has many advantages as in the fabrication of low cost sensors, e-paper, smart cards, and flexible displays. In this study, we simulated the mechanical and electrical characteristics of the OTFT with various voltage conditions by using COMSOL. The model consisting of a channel, source and drain was employed to investigate the temperature distribution and thermal stress concentration. The channel length is 40 µm and the voltage ranged between −20V and −40V. The OTFT was fabricated using pentacene as a semiconducting layer and electroplated Ni as a gate electrode. Mechanical properties of the fabricated OTFT were characterized by thermal stress which was predicted with the result of stress distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.