Nanoporous carbon films were deposited by 248 nm pulsed laser ablation of a graphite target in different background pressures of argon (P Ar ). The morphology changed from smooth, high-density amorphous carbon films at P Ar = 20 mTorr to ultra-low density nanoporous material at P Ar = 380 mTorr. Subsequently, the nanostructural, chemical and electrical properties of metal containing nanoporous carbon samples were investigated by ablating graphite targets containing known contents of Ni and Co. We demonstrate how the ablation plume dynamics affect both the nanostructure of the material and the incorporation of metal atoms. The suitability of these functionalised ultra-low density materials for gas sensing applications is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.