This paper aims to serve two main objectives; one is to demonstrate the modelling capabilities of a neuro-fuzzy approach, namely ANFIS (adaptive-network based fuzzy inference system) to a nonlinear system; and the other is to design a fuzzy controller to control such a system. The nonlinear system, which is a liquid-level system, is represented first by its mathematical model and then by ANFIS architecture. The ANFIS model is formed by means of input-output data set taken from the mathematical model. Then a PIDtype fuzzy controller, which linguistically approximates the classical three-term compensation, was designed to control the system represented by both its mathematical and ANFIS models in order to perform an agreement comparison between them. It is shown that the ANFIS architecture can model a nonlinear system very accurately by means of input-output pairs obtained either from the actual system or its mathematical model. It is also shown that such a system can be controlled effectively by a fuzzy controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.