Radon ((222)Rn) measurements were undertaken in 16 samples of well water representing different depths and different types of aquifers found at the city centre of Konya, Central Turkey. The radon activity concentrations of the well water samples collected in the spring and summer seasons of 2012 were measured by using the radon gas analyser (AlphaGUARD PQ 2000PRO). The radon concentrations for spring and summer seasons are 2.29 ± 0.17 to 27.25 ± 1.07 and 1.44 ± 0.18 to 27.45 ± 1.25 Bq l(-1), respectively. The results at hand revealed that the radon concentration levels of the waters strictly depend on the seasons and are slightly variable with depth. Eleven of the 16 well water samples had radon concentration levels below the safe limit of 11.11 Bq l(-1) recommended by the United States Environmental Protection Agency. However, all measured radon concentration levels are well below the 100 Bq l(-1) safe limit declared by the World Health Organisation. The doses resulting from the consumption of these waters were calculated. The calculated minimum and maximum effective doses are 0.29 and 5.49 µSv a(-1), respectively.
The density functional theory (DFT) at B3LYP/6-31G(d) level has been utilized to achieve the electric dipole moment $\left( \mu \right),$static dipole polarizability $\left( \alpha \right)$and first hyperpolarizability $\left( \beta \right)$values for ferulic acid (1) and chenodeoxycholic acid (2). The time-dependent Hartree-Fock (TDHF) technique as a powerful quantum chemical method has been implemented to reveal the dynamic $\alpha ,\,\beta $and third-order hyperpolarizabilities $\left( \gamma \right)$of the examined compounds. Our computational conclusions have been compared with the results of similar materials in the literature. The first and second frontier molecular orbitals (MOs) and their band gaps have also been investigated by means of DFT.
(222)Rn (radon) is one of the most important sources of natural radiation to which people are exposed. It is an alpha-emitting noble gas and it can be found in various concentrations in soil, air and in different kinds of water. In this study, we present the results of radon concentration measurements in thermal waters taken from the sources in the region of Konya located in the central part of Turkey. The radon activity concentrations in 10 thermal water samples were measured by using the AlphaGUARD PQ 2000PRO radon gas analyser in spring and summer of the year 2012. We found that radon activity concentrations range from 0.60±0.11 to 70.34±3.55 kBq m(-3) and from 0.67±0.03 to 36.53±4.68 kBq m(-3) in spring and summer, respectively. We also calculated effective doses per treatment in the spas for the spring and summer seasons. It was found that the minimum and maximum effective doses per treatment are in the range of 0.09-10.13 nSv in spring and in the range of 0.1-5.26 nSv in summer.
Using density matrices we describe the time evolution of nonequilibrium states with a set of hierarchical of quantum kinetic equations. An analogous formalism to this equation is developed via the path integral method in a holomorphic representation of density matrices and related to the Green’s function formalism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.