Context. Jovian electrons serve an important role in test-particle distribution in the inner heliosphere. They have been used extensively in the past to study the (diffusive) transport of cosmic rays in the inner heliosphere. With new limits on the Jovian source function, that is, the particle intensity just outside the Jovian magnetosphere, and a new set of in-situ observations at 1 AU for cases of both good and poor magnetic connection between the source and observer, we revisit some of these earlier simulations. Aims. We aim to find the optimal numerical set-up that can be used to simulate the propagation of 6 MeV Jovian electrons in the inner heliosphere. Using such a setup, we further aim to study the residence (propagation) times of these particles for different levels of magnetic connection between Jupiter and an observer at Earth (1 AU). Methods. Using an advanced Jovian electron propagation model based on the stochastic differential equation approach, we calculated the Jovian electron intensity for different model parameters. A comparison with observations leads to an optimal numerical setup, which was then used to calculate the so-called residence (propagation) times of these particles. Results. Through a comparison with in-situ observations, we were able to derive transport parameters that are appropriate for the study of the propagation of 6 MeV Jovian electrons in the inner heliosphere. Moreover, using these values, we show that the method of calculating the residence time applied in the existing literature is not suited to being interpreted as the propagation time of physical particles. This is due to an incorrect weighting of the probability distribution. We applied a new method, where the results from each pseudo-particle are weighted by its resulting phase-space density (i.e. the number of physical particles that it represents). We thereby obtained more reliable estimates for the propagation time.
With upcoming missions such as the James Webb Space Telescope, the European Extremely Large Telescope, and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, we soon will be on the verge of detecting and characterizing Earth-like exoplanetary atmospheres for the first time. These planets are most likely to be found around smaller and cooler K- and M-type stars. However, recent observations showed that their radiation environment might be much harsher than that of the Sun. Thus, the exoplanets are most likely exposed to an enhanced stellar radiation environment, which could affect their habitability, for example, in the form of a hazardous flux of energetic particles. Knowing the stellar radiation field, and being able to model the radiation exposure on the surface of a planet, is crucial to assess its habitability. In this study, we present 3D magnetohydrodynamic-based model efforts investigating M-stars, focusing on V374 Peg, Proxima Centauri, and LHS 1140, chosen because of their diverse astrospheric quantities. We show that V374 Peg has a much larger astrosphere (ASP) than our Sun, while Proxima Centauri and LHS 1140 most likely have ASPs comparable to or even much smaller than the heliosphere, respectively. Based on a 1D transport model, for the first time, we provide numerical estimates of the modulation of Galactic cosmic rays (GCRs) within the three ASPs. We show that the impact of GCRs on the Earth-like exoplanets Proxima Centauri b and LHS 1140 b cannot be neglected in the context of exoplanetary habitability.
Drift effects play a significant role in the transport of charged particles in the heliosphere. A turbulent magnetic field is also known to reduce the effects of particle drifts. The exact nature of this reduction, however, is not clear. This study aims to provide some insight into this reduction, and proposes a relatively simple, tractable means of modelling it that provides results in reasonable agreement with numerical simulations of the drift coefficient in a turbulent magnetic field.
In this study, a novel ab initio cosmicray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studiesis that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.