The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly.
This work uses Monte Carlo simulations to investigate the dependence of residual and misrepaired double strand breaks (DSBs) at 24 hours on the initial damage pattern created during ion therapy. We present results from a nanometric DNA damage simulation coupled to a mechanistic model of Non-Homologous End Joining, capable of predicting the position, complexity, and repair of DSBs. The initial damage pattern is scored by calculating the average number of DSBs within 70 nm from every DSB. We show that this local DSB density, referred to as the cluster density, can linearly predict misrepair regardless of ion species. The models predict that the fraction of residual DSBs is constant, with 7.3% of DSBs left unrepaired following 24 hours of repair. Through simulation over a range of doses and linear energy transfer (LET) we derive simple correlations capable of predicting residual and misrepaired DSBs. These equations are applicable to ion therapy treatment planning where both dose and LET are scored. This is demonstrated by applying the correlations to an example of a clinical proton spread out Bragg peak. Here we see a considerable biological effect past the distal edge, dominated by residual DSBs.
BackgroundThe cytotoxicity of radiotherapy and chemotherapy can be enhanced by modulating DNA repair. PARP is a family of enzymes required for an efficient base-excision repair of DNA single-strand breaks and inhibition of PARP can prevent the repair of these lesions. The current study investigates the trimodal combination of ABT-888, a potent inhibitor of PARP1-2, ionizing radiation and temozolomide(TMZ)-based chemotherapy in glioblastoma (GBM) cells.MethodsFour human GBM cell lines were treated for 5 h with 5 μM ABT-888 before being exposed to X-rays concurrently with TMZ at doses of 5 or 10 μM for 2 h. ABT-888′s PARP inhibition was measured using immunodetection of poly(ADP-ribose) (pADPr). Cell survival and the different cell death pathways were examined via clonogenic assay and morphological characterization of the cell and cell nucleus.ResultsCombining ABT-888 with radiation yielded enhanced cell killing in all four cell lines, as demonstrated by a sensitizer enhancement ratio at 50% survival (SER50) ranging between 1.12 and 1.37. Radio- and chemo-sensitization was further enhanced when ABT-888 was combined with both X-rays and TMZ in the O6-methylguanine-DNA-methyltransferase (MGMT)-methylated cell lines with a SER50 up to 1.44. This effect was also measured in one of the MGMT-unmethylated cell lines with a SER50 value of 1.30. Apoptosis induction by ABT-888, TMZ and X-rays was also considered and the effect of ABT-888 on the number of apoptotic cells was noticeable at later time points. In addition, this work showed that ABT-888 mediated sensitization is replication dependent, thus demonstrating that this effect might be more pronounced in tumour cells in which endogenous replication lesions are present in a larger proportion than in normal cells.ConclusionsThis study suggests that ABT-888 has the clinical potential to enhance the current standard treatment for GBM, in combination with conventional chemo-radiotherapy. Interestingly, our results suggest that the use of PARP inhibitors might be clinically significant in those patients whose tumour is MGMT-unmethylated and currently derive less benefit from TMZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.