The levee stretch near Dataran Bandar Baharu was a part of the Kerian River Flood Mitigation Project (Phase 3) in Kedah to address frequent flooding problems at the area. It has been facing recurring levee failure despite several repair attempts in the past. As the research area was subjected to water level fluctuations, a numerical model using SEEP/W was analysed to study the effect of drawdown and seepage on the failed levee. Variables considered in this study include soil permeability, groundwater table and time dependent river water levels on the upstream side of the levee. The transient analysis carried out indicated that the levee was susceptible to failure due to the relatively high phreatic line within the levee during drawdown and a seepage face occurrence on the upstream side of the levee.
This paper describes field experience of designing a successful scale squeeze program for an oil well. This was done utilizing an adsorption isotherm derived from a core flood data from other reservoir. Correlation and reliability of the adsorption isotherm with actual field flow back data after squeeze treatment for a period of 18-month are given. Moreover, utilizing the knowledge generated, a bespoke multilayer adsorption isotherm was optimized for a treated well for more efficient squeeze design for next treatment. In order to achieve our objective, an adsorption isotherm from other reservoir core flood was first generated. With the knowledge not limited to current candidate well production rates, well properties, perforation height, number of zones and other essential parameters, a 18-month squeeze treatment program was designed. Water chemistry 18-month data was utilized to validate the scale squeeze design. An improved multilayer adsorption isotherm bespoke for this well was generated. In conjunction with flow-back production data, a scheduled sampling program and water analysis utilizing Inductively Coupled Plasma (ICP) for post treatment Scale Inhibitor (SI) residuals data was collected to validate the adsorption isotherm derived from other reservoir. As predicted by the model for post treatment monitoring, the SI residual concentration; back calculated from SI chemistry utilized for the treatment are found to have an excellent correlation with the adsorption isotherm derived from a different reservoir. Hence, the 18-month squeeze design derived from a different reservoir was a great success. The slight difference between real flow back data and the adsorption isotherm generated from other reservoir become a benchmark to derive an improved adsorption isotherm to optimize the scale inhibition protection than the current treatment. In summary, parameters such as mineralogy study, porosity, permeability, crude properties and dynamic scale loop (DSL) study are the utmost important information to be analyzed prior using other reservoir core flood data as reference. As results shown, these are the best way to generate squeeze design with limited information had in hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.