Exposure to chronic hypoxia results in a lower resting heart rate and a blunted cardiovascular responsiveness to beta-adrenergic receptor stimulation. Possible effects of acclimatization to high altitude on the binding of [125I]iodohydroxybenzylpindolol to beta-adrenergic receptors on membranes of right and left ventricles of rat heart were determined. Chronic high-altitude exposure led to a decrease in the density of beta-adrenergic receptors in nonhypertrophied left ventricles as well as in hypertrophied right ventricles. The affinity of the receptor for the radioligand was not changed by the exposure to high altitude, suggesting that the properties of the receptor were not affected. Basal and isoproterenol-stimulated adenylate cyclase activities were decreased in membranes prepared from hearts and pulmonary arteries of rats acclimatized to high altitude. The loss of cardiac beta-adrenergic receptors in rats adapted to high altitude was prevented by the chronic coadministration of a low dose of DL-propranolol. The results suggest that changes in beta-adrenergic receptor density may partially explain the hemodynamic adaptation that occurs with chronic hypoxia. These decreases may be due to a loss of functional beta-adrenergic receptors caused by chronically elevated concentrations of circulating neurally released catecholamines.
Chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodeling in rats. Because platelet-activating factor (PAF) levels increase in lung lavage fluid and in plasma from chronically hypoxic rats, we examined the effect of two specific, structurally unrelated PAF antagonists, WEB 2170 and BN 50739, on hypoxia-induced pulmonary vascular remodeling. Treatment with either agent reduced hypoxia-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk of hypoxic exposure (simulated altitude 5,100 m) but did not affect cobalt (CoCl2)-induced pulmonary hypertension. The PAF antagonists had no effect on the hematocrit of normoxic or chronically hypoxic rats or CoCl2-treated rats. Hypoxia-induced pulmonary hypertension was associated with an increase in the vessel wall thickness of the muscular arteries and reduction in the number of peripheral arterioles. In WEB 2170-treated rats, these changes were significantly less severe than those observed in untreated chronically hypoxic rats. PAF receptor blockade had no acute hemodynamic effects; i.e., it did not affect pulmonary arterial pressure or cardiac output nor did it affect the magnitude of acute hypoxic pulmonary vasoconstriction in awake normoxic or chronically hypoxic rats. Isolated lungs from chronically hypoxic rats showed a pressor response to the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) and an increase in the number of leukocytes lavaged from the pulmonary circulation. In vivo treatment with WEB 2170 significantly reduced the fMLP-induced pressor response compared with that observed in isolated lungs from untreated chronically hypoxic rats. These results suggest that PAF contributes to the development of chronic pulmonary hypertension induced by chronic hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)
We hypothesised that endothelin (ET)-1 plays an important role in the pathogenesis of emphysema. We attempted to apply ET-1 receptor antagonists to demonstrate and further elucidate the molecular pathogenesis pathways through which ET-1 may cause emphysematous changes.Sprague-Dawley rats were divided into four groups: control, cigarette smoke extract (CSE), CSE+BQ-123 (a selective endothelin receptor type A (ET A ) antagonist) and CSE+bosentan (a mixed ET A /ET B receptor antagonist). The CSE was injected intraperitoneally once a week for 3 weeks, and BQ-123 or bosentan was administered daily for the same duration. The expression of ET A receptor, apoptosis index, caspase-3 activity, matrix metalloproteinase (MMP)-2 and MMP-9 activity, and tumour necrosis factor (TNF)-a and interleukin (IL)-1b concentrations were measured in the lung tissue. The ET-1 levels and antioxidant activity were measured in the serum.Both BQ-123 and bosentan prevented the development of CSE-induced emphysema, blocked the expression of ET A receptor, inhibited pulmonary apoptosis, inactivated MMP-2 and MMP-9 activities in the lung tissues, reduced the concentrations of inflammatory cytokines TNF-a and IL1b, and improved the biological antioxidant activity in the serum.Emphysema development is suppressed by ET-1 receptor antagonists. ET-1 may cause emphysematous changes through molecular pathogenesis pathways involving apoptosis, proteinase and antiproteinase imbalance, inflammation and oxidative stress.
Rapid ascent to high altitude may be associated with the development of high-altitude pulmonary edema (HAPE) in susceptible individuals. Because lung lavage fluid obtained from such patients can be rich in protein and neutrophils, we considered that an element of lung injury and inflammation contributed to the pathogenesis of some forms of HAPE. On the basis of such a likely contribution of inflammatory mechanisms, we induced pulmonary lung injury and inflammation by priming rats with Salmonella enteritidis endotoxin (ETX) (0.1 or 0.5 mg/kg body wt ip) and examined the influence of added exposure to simulated hypobaric hypoxia (24 h, 4,300 m). The animals that were primed with ETX and exposed to hypoxia, but not those that received either ETX or hypoxia alone, developed lung vascular damage. This vascular damage manifested itself histologically and by increases in the lung vascular permeability-surface area product and the lung bloodless wet weight-to-dry weight ratio. The bronchoalveolar lavage fluid of ETX-primed hypoxia-exposed rats contained a greater number of white blood cells and a higher concentration of protein compared with that of the ETX-primed rats. Hearts of ETX + hypoxia-treated rats showed an increased ratio of right ventricular weight divided by body weight (RV/BW). Neutropenia prevented the development of pulmonary edema and the increase in ETX + hypoxia rats with a Ca2+ entry blocker inhibited lung injury and RV hypertrophy, these results indicate that ETX priming causes pulmonary edema at high altitude and suggest a role for neutrophils and Ca2+ in this rat model of lung injury.
Lung platelet-activating factor (PAF) levels increased in some rats at 1-3 wk after subcutaneous injection of monocrotaline (MCT). We tested the effect of specific PAF antagonists, WEB 2086 and WEB 2170, on MCT-induced lung injury and subsequent pulmonary hypertension and right ventricular hypertrophy. Treatment with either agent decreased MCT-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk after injection. Treatment with WEB 2170 reduced MCT-induced pulmonary vascular leak at 1 wk after injection, and WEB 2086-treatment exclusively during the early leak phase also decreased MCT-induced right ventricular hypertrophy at 3 wk. Treatment with WEB 2170 between the 3rd and 4th wk after MCT injection inhibited the progression of right ventricular hypertrophy at 4 wk. These results suggest that PAF contributes to the early pulmonary vascular leak, and this leak phase is important for the development of pulmonary hypertension and right ventricular hypertrophy in MCT-treated rats. Furthermore, it appears that PAF action contributes to the maintenance of a chronic inflammatory process that involves the synthesis of other lipid mediators (prostaglandins and leukotrienes) and leads to pulmonary hypertension. We conclude that PAF has a role in the MCT-induced inflammatory lung injury and pulmonary hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.