The changes in population size of different microbial groups (total aerobic heterotrophs, actinomycetes, fungi, fecal coliforms, ammonium-and nitrite-oxidizing bacteria, and denitrifying bacteria) and the activities of 19 different enzymes (three phosphatases, threeesterases, two proteases, three amino-peptidases, and eight glycosyl-hydrolases) were examined during cocomposting of poultry litter (a mixture of poultry manure, waste feed, feathers, and wood shavings) and yard trimmings (a mixture of grass clippings, leaves, and wood barks). Three piles with forced aeration were established by mixing 2:1 (vIv) ratio of poultry litter and yard trimmings. During composting, samples were taken at three different locations (top, middle, and bottom) of the forced aeration piles for microbial and enzyme analyses. Results demonstrated that population size of different microbial groups was not a limiting factor in this composting process as the microorganisms in the poultry litter + yard trimmings compost are in great abundance. Although the numbers of these microbial groups were reduced by high temperature, their populations multiplied rapidly as composting progressed. Fecal coliforms were eliminated by day 49, suggesting that the poultry litter + yard trimmings compost showed an overall increase in diversity and relative abundance of extracellular enzyines present as composting progressed. The population of fungi and actinomycetes (microorganisms active in degradation of cellulose, hemicellulose, and lignin) were positively correlated with esterase, valine amino-peptidase, a-galactosidase, l3-glucosidase, and lipase. Of all 19 enzymes examined, :B-galactosidase (enzyme involved in the hydrolysis of lactose) had the most significant positive correlation with microbial populations, such as total aerobic heterotrophs, ammonicyn-and nitrite-oxidiiing bacteria, denitrifying bacteria, and fecal coliforms. Cystine amino peptidase, chymotrypsin, and trypsin showed no evidence of activity during the entire period of composting. This composting process repre-'seri.ted a combined activity of a wide succession of environments in the compost pile as one microbial group I enzyme overlapped the other and each emerged gradually as a result of the continual Ch3.J.lge in temperature as well as moisture content, °2 and CO2 level, and progressive breakdown of complex compounds to simpler ones..
To investigate the diversity of dioxygenase genes involved in polycyclic aromatic hydrocarbon (PAH)-degradation, a total of 32 bacterial strains were isolated from surface mangrove sediments, from the genera Mycobacterium, Sphingomonas, Terrabacter, Sphingopyxis, Sphingobium and Rhodococcus. Two sets of PCR primers were constructed to detect the nidA-like and nahAc-like sequences of the alpha subunit of the PAH ring-hydroxylating dioxygenase. PCR amplified the DNA fragments from all Gram-positive bacteria by using nidA-like primers and from all Gram-negative bacteria, except two, by using nahAc-like primers. The nidA-like primers showed three subtypes of nidA-like gene: (i) fadA1, clustering with nidA3 from M. vanbaalenii PYR-1, (ii) nidA, clustering with nidA from PYR-1, and (iii) fadA2 clustering with dioxygenase from Arthrobacter sp. FB24. The amplicons detected by nahAc-like primers had high sequence homologies to phnA1a from Sphingomonas sp. CHY-1 and were amplifiable from 8 of the 16 Gram-negative isolates. The primer also generated amplicons that had a 32-36% similarity to phnA1a and 53-93% identity to p-cumate dioxygenase. These results suggest that the nidA-like and nahAc-like genes are prevalent in the PAH-degrading bacteria and that they are useful for determining the presence of PAH-dioxygenase genes in environmental samples.
Mangrove soils have been recognized as sources of greenhouse gases, but the atmospheric fluxes are poorly characterized, and their adverse warming effect has rarely been considered with respect to the potential contribution of mangrove wetlands to climate change mitigation. The current study balanced the warming effect of soil greenhouse gas emissions with the plant carbon dioxide (CO 2 ) sequestration rate derived from the plants' net primary production in a productive mangrove wetland in South China to assess the role of mangrove wetlands in reducing the atmospheric warming effect. Soil characteristics were also studied in the summer to examine their relationships with gas fluxes. The soil to atmosphere fluxes of nitrous oxide (N 2 O), methane (CH 4 ) and CO 2 ranged from −1.6 to 50.0 μg m −2 h −1 , from −1.4 to 5360.1 μg m −2 h −1 and from −31 to 512 mg m −2 h −1 , respectively, which indicated that the mangrove soils act as sources of greenhouse gases in this area. The gas fluxes were higher in summer than in the cold seasons and were variable across mangrove sites. Gas fluxes in summer were positively correlated with the soil organic carbon, total nitrogen, and ammonia contents. The mangrove plants sequestered a considerable amount of atmospheric CO 2 at rates varying from 3652 to 7420 g CO 2 m −2 yr −1 . The ecosystem acted as a source of CH 4 and N 2 O gases but was a more intense CO 2 sink. However, the warming effect of soil gas emissions accounted for 9.3-32.7% of the plant CO 2 sequestration rate, partially reducing the benefit of mangrove plants, and the two trace gases comprised 9.7-33.2% of the total warming effect. We therefore propose that an assessment of the reduction of atmospheric warming effects by a mangrove ecosystem should consider both soil greenhouse gas emissions and plant CO 2 sequestration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.