An increasing number of studies indicate that marine mammals and some seabirds are exposed to organotins. However, results from northern and Arctic areas are few. Here results from analysis of tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPhT), diphenyltin (DPhT) and monophenyltin (MPhT) in harbour porpoise (Phocoena phocoena), common seal (Phoca vitulina), ringed seal (Phoca hispida) and glaucous gull (Larus hyperboreus) from Norwegian territory are presented. Relatively high concentrations of DBT, TBT and MBT were observed in muscle, kidney and liver from harbour porpoises caught in northern Norway in 1988, just before restrictions on the use of tributyltin (TBT)(mainly on small boats) were introduced in several European countries. The concentrations in harbour porpoise muscle tissue were reduced significantly 11 years later, possibly as a result of the introduced restrictions. Considerably lower concentrations of butyltins were observed in the seals compared to porpoises. The lowest levels of organotins were found in ringed seals from Spitsbergen, where only traces of dibutyltin (DBT) and monobutyltin (MBT) were observed. Traces of DBT and MBT were also found in some individual glaucous gulls from Bear Island. The sum of the degradation products MBT and DBT in liver samples from all analysed species were generally higher than TBT itself. Triphenyltin (TPhT) was observed in all porpoise samples and in livers of common seals. Also the sum of the degradation products MPhT and DPhT in liver samples from porpoise and common seals were higher than TPhT. No traces of phenyltins were found in ringed seals from Spitsbergen or in glaucous gulls from Bear Island. The limited data available indicate low to moderate exposure to organotins in northern areas (Spitsbergen and Bear Island). Marine mammals are however more exposed further south along the Norwegian Coast.
Monitoring concentrations of organic pollutants in water is essential to predict effects and to initiate preventive steps. Results from the analysis of water samples provide snapshots of a situation, whereas monitoring using semipermeable membrane devices (SPMDs) provides a time-integrated picture of the concentration of pollutants in water. In this investigation, SPMDs, caged mussels and water samples were used to monitor the levels of organotin compounds in the inner Oslofjord, Norway, over a period of 12 weeks. The work-up procedure for the analysis of organotins was optimised, focusing on the clean-up procedure using gel permeation chromatography (GPC). By using several GPC columns, as much as 1 g of triolein could be employed. This reduces the background emission noise on the baseline, leading to an improvement in the detection limits. The main uptake of tributyltin (TBT) in mussels and SPMDs levelled off after 14 days. A longer uptake period was indicated for SPMDs at stations with a high water concentration of TBT (5-10 ng Sn L(-1)) compared with those with a low water concentration of TBT (approximately 1 ng Sn L(-1)). A concentration gradient was observed for water, SPMDs and mussels from the innermost station close to Oslo harbour to the station further out in the fjord, indicating that the three analysed matrices give approximately the same pollution gradient. The bioconcentration factor (BCF) for TBT in mussels was in the range 12-14 000 (wet weight) and, for SPMDs, 10-12 000 (fat). A good correlation with the TBT water concentrations was achieved within a period of 14-30 days of exposure for mussels and after 2-3 months for SPMDs. A good correlation was also found between the TBT concentration in SPMDs and mussels at the end of the experiment. SPMDs can therefore be used to predict concentrations of TBT in both water and mussels.
The impact of anthropogenic pollutants on the marine ecosystem is related to the concentrations experienced by the biota in the seawater and the resulting concentration in the organism. Results from monitoring of pollutants in water samples provide snapshots that can be high or low depending on a wide range of variables. To provide more integrated information, semipermeable membrane devices, SPMDs, have been used to monitor different organic pollutants. In this survey, SPMDs were used to monitor organotin compounds in the marine environment. Time-integrated sampling using SPMDs and direct water sampling was carried out at six stations in the inner Oslofjord, Norway. The sample work-up procedure for both water and SPMDs was based on direct derivatisation using NaBEt4 and simultaneous extraction with an organic solvent. Analysis was performed using a gas chromatograph equipped with an atomic emission detector. The results show that SPMDs do accumulate organotin compounds from the water phase. Both tributyl- (TBT) and dibutyltin were detected in all of the analysed membranes while no monobutyltin was found. Levels found in SPMDs range from < 1 to 220 ng Sn SPMD(-1). Water concentrations range from 0.4 to 10 ng Sn L(-1). An investigation of relative levels of TBT showed a similar concentration gradient in the inner Oslofjord using either direct water sampling or passive sampling by SPMDs. As the membranes are able to accumulate the organotins from the water it will be possible to locate lower concentrations than with direct analyses of water samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.