Aims. We present the results of a long-term monitoring (11 years, between 1996 and 2006) of Hα and Hβ line variations of the active galactic nucleus of NGC 4151. Methods. High quality spectra (S /N > 50 and R ≈ 8 Å) of Hα and Hβ were investigated. During monitoring period, we analyzed line profile variations. Comparing the line profiles of Hα and Hβ, we studied different details (bumps, absorbtion features) in the line profiles. The variations in the different Hα and Hβ line profile segments were investigated. We also analyzed the Balmer decrement for entire lines and for line segments. Results. We found that the line profiles varied strongly during the monitoring period, and exhibited blue and red asymmetries. This is indicative of a complex BLR geometry inside NGC 4151 with, at least, three kinematically distinct regions: one that contributes to the blue line wing, one to the line core and one to the red line wing. The variation may be caused by an accelerating outflow originating very close to the black hole, where the red part may come from a region closer to the black hole than the blue part, which originates in the region with the highest outflow velocities. Conclusions. Taking into account that the BLR of NGC 4151 has a complex geometry (probably affected by an outflow) and that a portion of the broad line emission does not seem to be produced entirely by photoionization, one may ask whether the study of the BLR using reverberation mapping would be worthwhile for this galaxy.
Context. Over the past few years, on several occasions, large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy γ-ray flares and they have attracted considerable attention, since they could allow us to probe the magnetic field structure in the γ-ray emitting region of the jet. The flat-spectrum radio quasar 3C 279 is one of the most prominent examples showing this behaviour. Aims. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. Methods. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C 279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of [2008][2009][2010][2011][2012]. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. Results. 3C 279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth ∼360• rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. Conclusions. We conclude that, during the two different optical flux states, two different processes govern polarization variation, which is possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.