Freeze and breakup dates of ice on lakes and rivers provide consistent evidence of later freezing and earlier breakup around the Northern Hemisphere from 1846 to 1995. Over these 150 years, changes in freeze dates averaged 5.8 days per 100 years later, and changes in breakup dates averaged 6.5 days per 100 years earlier; these translate to increasing air temperatures of about 1.2 degrees C per 100 years. Interannual variability in both freeze and breakup dates has increased since 1950. A few longer time series reveal reduced ice cover (a warming trend) beginning as early as the 16th century, with increasing rates of change after about 1850.
Often extreme events, more than changes in mean conditions, have the greatest impact on the environment and human well-being. Here we examine changes in the occurrence of extremes in the timing of the annual formation and disappearance of lake ice in the Northern Hemisphere. Both changes in the mean condition and in variability around the mean condition can alter the probability of extreme events. Using long-term ice phenology data covering two periods 1855-6 to 2004-5 and 1905-6 to 2004-5 for a total of 75 lakes, we examined patterns in long-term trends and variability in the context of understanding the occurrence of extreme events. We also examined patterns in trends for a 30-year subset (1975-6 to 2004-5) of the 100-year data set. Trends for ice variables in the recent 30-year period were steeper than those in the 100-and 150-year periods, and trends in the 150-year period were steeper than in the 100-year period. Ranges of rates of change (days per decade) among time periods based on linear regression were 0.3−1.6 later for freeze, 0.5−1.9 earlier for breakup, and 0.7−4.3 shorter for duration. Mostly, standard deviation did not change, or it decreased in the 150-year and 100-year periods. During the recent 50-year period, standard deviation calculated in 10-year windows increased for all ice measures. For the 150-year and 100-year periods changes in the mean ice dates rather than changes in variability most strongly influenced the significant increases in the frequency of extreme lake ice events associated with warmer conditions and decreases in the frequency of extreme events associated with cooler conditions.
Increase of density due to mixing (cabbeling instability) in a spring thermal bar in Lake Baikal results in the sinking of cold surface water (T = 3.2−3.4°C, w = 0.3 cm s−1) below the profile of Tmd. This density increase generates forced convection and subsequent movement of cold water along the underwater slope to maximum depths. Cooling of deep and near‐bottom waters caused by forced convection is compensated during other seasons of the year by eddy heat flux directed toward the bottom. On a long‐term basis, vertical temperature profiles in deep waters remain constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.