Aerosol-climate interactions constitute one of the major sources of uncertainty in assessing changes in aerosol forcing in the anthropocene as well as understanding glacial-interglacial cycles. Here we focus on improving the representation of mineral dust in the Community Atmosphere Model and assessing the impacts of the improvements in terms of direct effects on the radiative balance of the atmosphere. We simulated the dust cycle using different parameterization sets for dust emission, size distribution, and optical properties. Comparing the results of these simulations with observations of concentration, deposition, and aerosol optical depth allows us to refine the representation of the dust cycle and its climate impacts. We propose a tuning method for dust parameterizations to allow the dust module to work across the wide variety of parameter settings which can be used within the Community Atmosphere Model. Our results include a better representation of the dust cycle, most notably for the improved size distribution. The estimated net top of atmosphere direct dust radiative forcing is 20.23 6 0.14 W/m 2 for present day and 20.32 6 0.20 W/m 2 at the Last Glacial Maximum. From our study and sensitivity tests, we also derive some general relevant findings, supporting the concept that the magnitude of the modeled dust cycle is sensitive to the observational data sets and size distribution chosen to constrain the model as well as the meteorological forcing data, even within the same modeling framework, and that the direct radiative forcing of dust is strongly sensitive to the optical properties and size distribution used.
Aerosols are suspensions of solid and/or liquid particles in the atmosphere and modify atmospheric radiative fluxes and chemistry. Aerosols move mass from one part of the earth system to other parts of the earth system, thereby modifying biogeochemistry and the snow surface albedo. This paper reviews our understanding of the impacts of aerosols on climate through direct radiative changes, aerosol-cloud interactions (indirect effects), atmospheric chemistry, snow albedo, and land and ocean biogeochemistry. Aerosols play an important role in the preindustrial (natural) climate system and have been perturbed substantially over the anthropocene, often directly by human activity. The most important impacts of aerosols, in terms of climate forcing, are from the direct and indirect effects, with large uncertainties. Similarly large impacts of aerosols on land and ocean biogeochemistry have been estimated, but these have larger uncertainties.
[1] The first Martian year and a half of observations by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter has revealed new details of the thermal structure and distributions of dust and water ice in the atmosphere. The Martian atmosphere is shown in the observations by the Mars Climate Sounder to vary seasonally between two modes: a symmetrical equinoctial structure with middle atmosphere polar warming and a solstitial structure with an intense middle atmosphere polar warming overlying a deep winter polar vortex. The dust distribution, in particular, is more complex than appreciated before the advent of these high (∼5 km) vertical resolution observations, which extend from near the surface to above 80 km and yield 13 dayside and 13 nightside pole-to-pole cross sections each day. Among the new features noted is a persistent maximum in dust mass mixing ratio at 15-25 km above the surface (at least on the nightside) during northern spring and summer. The water ice distribution is very sensitive to the diurnal and seasonal variation of temperature and is a good tracer of the vertically propagating tide.
[1] The vertical distribution of dust in Mars's atmosphere is a critical and poorly known input in atmospheric physical and chemical models and a source of insight into the lifting and transport of dust and general vertical mixing in the atmosphere. We investigate vertical profiles of dust opacity To represent local maxima in inferred mass mixing ratio in these profiles, we develop an empirical alternative to the classic "Conrath profile" for representing the vertical distribution of dust in the Martian atmosphere. We then assess the magnitude and variability of atmospheric dust loading, the depth of dust penetration during these seasons, and the impact of the observed vertical dust distribution on the radiative forcing of the circulation. During most of northern spring and summer, the dust mass mixing ratio in the tropics has a maximum at 15-25 km above the local surface (the high-altitude tropical dust maximum (HATDM)). The HATDM appears to have increased significantly in magnitude and altitude during middle to late northern summer of MY 29. The HATDM gradually decayed during late summer of MY 28. Interannual variability in the dust distribution during middle to late northern summer may be connected with known interannual variability in tropical dust storm activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.