Prediction of water level is an important task for groundwater planning and management when the water balance consistently tends toward negative values. In Maheshwaram watershed situated in the Ranga Reddy District of Andhra Pradesh, groundwater is overexploited, and groundwater resources management requires complete understanding of the dynamic nature of groundwater flow. Yet, the dynamic nature of groundwater flow is continually changing in response to human and climatic stresses, and the groundwater system is too intricate, involving many nonlinear and uncertain factors. Artificial neural network (ANN) models are introduced into groundwater science as a powerful, flexible, statistical modeling technique to address complex pattern recognition problems. This study presents the comparison of two methods, i.e., feed-forward neural network (FFNN) trained with Levenberg-Marquardt (LM) algorithm compared with a fuzzy logic adaptive network-based fuzzy inference system (ANFIS) model for better accuracy of the estimation of the groundwater levels of the Maheshwaram watershed. The statistical indices used in the analysis were the root mean square error (RMSE), regression coefficient (R 2 ) and error variation (EV).The results show that FFNN-LM and ANFIS models provide better accuracy (RMSE = 4.45 and 4.94, respectively, R 2 is 93% for both models) for estimating groundwater levels well in advance for the above location.
Security has become a critical issue in today's highly distributed and networked systems. Network intrusion detection systems (NIDSs), especially signature-based NIDSs, are being widely deployed in a distributed network environment with the purpose of defending against a variety of network attacks. Most of the commercially available NIDSs are software based and rely on pattern matching to extract the threat from network traffic. The increase in network speed and traffic may make existing algorithms to become a performance bottleneck. Therefore it is very necessary to develop faster and more efficient pattern matching algorithm in order to overcome the troubles on performance of NIDSs. Therefore, we propose a multi fusion pattern matching algorithm for Network Intrusion Detection Systems. The results obtained in percentages from the proposed fusion algorithm given better values in terms processing time in milliseconds than the existing algorithms when data English text are applied to evaluate the fusion performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.