Snake venoms are cocktails of enzymes and non‐enzymatic proteins used for both the immobilization and digestion of prey. The most common snake venom enzymes include acetylcholinesterases, l‐amino acid oxidases, serine proteinases, metalloproteinases and phospholipases A2. Higher catalytic efficiency, thermal stability and resistance to proteolysis make these enzymes attractive models for biochemists, enzymologists and structural biologists. Here, we review the structures of these enzymes and describe their structure‐based mechanisms of catalysis and inhibition. Some of the enzymes exist as protein complexes in the venom. Thus we also discuss the functional role of non‐enzymatic subunits and the pharmacological effects of such protein complexes. The structures of inhibitor–enzyme complexes provide ideal platforms for the design of potent inhibitors which are useful in the development of prototypes and lead compounds with potential therapeutic applications.
Snake venom oligomeric neurotoxins offer several unique examples of modulation of phospholipase A2 (PLA2) activity generated by molecular evolution. This phenomenon was found in evolutionary younger snakes and is probably common for representatives of the genus Vipera. At present, the best-studied example is the heterodimeric neurotoxin vipoxin from the venom of the southeast European snake Vipera ammodytes meridionalis. It is a complex between a basic strongly toxic PLA2 and an acidic and catalytically inactive PLA2-like component (Inh). This is the first reported example of a high degree of structural homology (62%) between an enzyme and its natural protein inhibitor. The inhibitor is a product of the divergent evolution of the unstable PLA2 in order to stabilize it and to preserve the pharmacological activity/toxicity for a long time. Inh reduces both the catalytic activity and toxicity of PLA2. Vipoxin also illustrates evolution of the catalytic into a inhibitory function. Vipoxin analogues have been found in the venom of viperid snakes inhabiting diverse regions of the world. An attempt is made to explain modulation of the toxic function by the three-dimensional structure of vipoxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.