A computer software system is designed for the segmentation and classification of benign and malignant tumor slices in brain computed tomography images. In this paper, we present a texture analysis methods to find and select the texture features of the tumor region of each slice to be segmented by support vector machine (SVM). The images considered for this study belongs to 208 benign and malignant tumor slices. The features are extracted and selected using Student's t-test. The reduced optimal features are used to model and train the probabilistic neural network (PNN) classifier and the classification accuracy is evaluated using k fold cross validation method. The segmentation results are also compared with the experienced radiologist ground truth. Quantitative analysis between ground truth and segmented tumor is presented in terms of quantitative measure of segmentation accuracy and the overlap similarity measure of Jaccard index. The proposed system provides some newly found texture features have important contribution in segmenting and classifying benign and malignant tumor slices efficiently and accurately. The experimental results show that the proposed hybrid texture feature analysis method using Probabilistic Neural Network (PNN) based classifier is able to achieve high segmentation and classification accuracy effectiveness as measured by Jaccard index, sensitivity, and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.